
Using OpenMP for Intranode Parallelism – Future OpenMP Di rections
Bronis R. de Supinski

1

Using OpenMP for

Intranode Parallelism

Bronis R. de Supinski

Paul Petersen

OpenMP 4.0 and the Future of OpenMP

Using OpenMP for Intranode Parallelism – Future OpenMP Di rections
Bronis R. de Supinski

2

� End of a long road? A brief rest stop along the
way…

� Addresses several major open issues for OpenMP
� Does not break existing code
� Includes 106 passed tickets

�Focus on major tickets initially
�Builds on two comment drafts (“RC1” and “RC2”)
�Many small tickets after RC2, a few large ones

� Final vote scheduled for July 11
� Already starting work on OpenMP 5.0

OpenMP 4.0 ratified last month

Using OpenMP for Intranode Parallelism – Future OpenMP Di rections
Bronis R. de Supinski

3

� Device constructs
� SIMD constructs
� Cancellation
� Task dependences and task groups
� Thread affinity control
� User-defined reductions
� Initial support for Fortran 2003
� Support for array sections (including in C and C++)
� Sequentially consistent atomics
� Display of initial OpenMP internal control variables

Overview of major 4.0 additions

Using OpenMP for Intranode Parallelism – Future OpenMP Di rections
Bronis R. de Supinski

4

� Use target directive to offload a region should be offloaded

� Creates new data environment from enclosing device data
environment

� Clauses support data movement and conditional offloading
�device supports offload to a device other than default
�mapensures variables accessible on device

�Does not assume copies are made – memory may be shared with host
�Does not copy if present in enclosing device data environment

� if supports running on host if amount of work is small

� Other constructs support device data environment
� target data places map list items in device data environment
� target update ensures variable is consistent in host and device

OpenMP 4.0 provides unified
support for a wide range of devices

#pragma omp target [clause [[,] clause] …]

Using OpenMP for Intranode Parallelism – Future OpenMP Di rections
Bronis R. de Supinski

5

� Use target declare directive to create device
versions

�Can be applied to functions and global variables
�Required for UDRs that use functions and execute on device

� New directive creates multiple teams in a target region

�Work across teams only synchronized at end of target region
�Useful for GPUs (corresponds to thread blocks)

� distribute directive runs loop(s) across multiple teams

� Several combined constructs (post-RC2) simplify device
use

Several other device constructs support
simple offload of full-featured code

#pragma omp declare target

#pragma omp teams [clause [[,] clause] …]

#pragma omp distribute [clause [[,] clause] …]

Using OpenMP for Intranode Parallelism – Future OpenMP Di rections
Bronis R. de Supinski

6

� Use simd directive to indicate a loop should be SIMDized

� Execute iterations of following loop in SIMD chunks
�Region binds to the current task, so loop is not divided across threads
�SIMD chunk is set of iterations executed concurrently by a SIMD

lanes
� Creates a new data environment
� Clauses control data environment, how loop is partitioned

�safelen(length) limits the number of iterations in a SIMD chunk
� linear lists variables with a linear relationship to the iteration space
�aligned specifies byte alignments of a list of variables
�private , lastprivate , reduction and collapse usual

meanings
�Would firstprivate be useful?

Reminiscent of our roots, OpenMP 4.0
provides portable SIMD constructs

#pragma omp simd [clause [[,] clause] …]

Using OpenMP for Intranode Parallelism – Future OpenMP Di rections
Bronis R. de Supinski

7

� Could rely on compiler to handle
�Compiler could in-line function to SIMDize its operations
�Compiler could try to generate SIMDize version of function
� Inefficient default would call function from each SIMD lane

� Provide declare simd directive to generate SIMD function

� Invocation of generated function processes across SIMD lanes
� Clauses control data environment, how function is used

�simdlen(length) specifies the number of concurrent arguments
�uniform lists invariant arguments across concurrent SIMD invocations
� inbranch and notinbranch imply always/never invoked in conditional

statement
� linear , aligned , and reduction are similar to simd clauses

What happens if a SIMDized loop
includes function calls?

#pragma omp declare simd [clause [[,] clause] …]
function definition or declaration

Using OpenMP for Intranode Parallelism – Future OpenMP Di rections
Bronis R. de Supinski

8

� The loop SIMD construct workshares and SIMDizes loop

�Cannot be specified separately
�Loop is first divided into SIMD chunks
�SIMD chunks are divided across implicit tasks
�Not guaranteed same schedule even with static schedule

� Parallel loop SIMD creates a parallel region with a loop SIMD
region

�Purely a convenience that combines separate directives
�Analogous to the combined parallel worksharing constructs
�Would a parallel SIMD construct (i.e., no worksharing) be useful?

The loop SIMD and parallel loop SIMD
combine two types of parallelism

#pragma omp for simd [clause [[,] clause] …]

#pragma omp paralel for simd [clause [[,] clause] …]

Using OpenMP for Intranode Parallelism – Future OpenMP Di rections
Bronis R. de Supinski

9

� Tells compiler to generate SIMD versions of functions

� Compile library and use functions in a SIMD loop

�Creates implicit tasks of parallel region
�Divides loop into SIMD chunks
�Schedules SIMD chunks across implicit tasks
�Loop is fully SIMDized by using SIMD versions of functions

The declare simd construct supports
SIMD execution of library routines

#pragma omp simd notinbranch
float min (float a, float b) {

return a < b ? a : b; }

#pragma omp simd notinbranch
float distsq (float x, float y) {

return (x − y) ∗ (x − y); }

void minex (float *a, float *b, float *c, float *d) {
#pragma omp parallel for simd
for (i = 0; i < N; i++)

d[i] = min (distsq(a[i], b[i]), c[i]);
}

Using OpenMP for Intranode Parallelism – Future OpenMP Di rections
Bronis R. de Supinski

10

� Control of nested thread team sizes (in OpenMP 3.1)

� Request binding of threads to places (in OpenMP 3.1)

� New extensions specify thread locations
�Increased choices for OMP_PROC_BIND

�Can still specify true or false
�Can now provide a list (possible item values: master , close or

spread) to specify how to bind implicit tasks of parallel regions
�Added OMP_PLACESenvironment variable

�Can specify abstract names including threads , cores and
sockets

�Can specify an explicit ordered list of places
�Place numbering is implementation defined

4.0 significantly extends initial high-
level affinity support of OpenMP 3.1

export OMP_NUM_THREADS=4,3,2

export OMP_PROC_BIND=TRUE

Using OpenMP for Intranode Parallelism – Future OpenMP Di rections
Bronis R. de Supinski

11

� Added a new clause to the parallel construct

�Overrides OMP_PROC_BINDenvironment variable
�Ignored if OMP_PROC_BINDis false

� New run time function to query current policy

� New policies determine relative bindings
�Assign threads to same place as master

�Assign threads close in place list to parent thread
�Assign threads to maximize spread across places

Affinity support now supports targeting
thread binding to specific parallel regions

proc_bind(master | close | spread)

omp_proc_bind_t omp_get_proc_bind(void);

Using OpenMP for Intranode Parallelism – Future OpenMP Di rections
Bronis R. de Supinski

12

� Added to list of base language versions
� Have a list of unsupported Fortran 2003 features

�List initially included 24 items (some big, some small)
�List has been reduced to 14 items
�List in specification reflects approximate priority
�Priorities determined by importance and difficulty

� Strategy: Gradually reduce list until full support available
in 5.0
� Removed procedure pointers, renaming operators on the USE

statement, ASSOCIATEconstruct, VOLATILE attribute and
structure constructors

�Will support Fortran 2003 object-oriented features next
�The biggest issue
�Considering concurrent reexamination of C++ support

OpenMP 4.0 includes initial

support for Fortran 2003

Using OpenMP for Intranode Parallelism – Future OpenMP Di rections
Bronis R. de Supinski

13

� Adds one easily shown construct

�Implicit task scheduling point at end of region; current task
is suspended until all child tasks generated in the region
and their descendants complete execution

�Similar in effect to a deep taskwait
�3.1 would require more synchronization, more directives

� More significant tasking extension added concept
of task dependence: the depend clause

4.0 adds taskgroup construct to

simplify task synchronization

#pragma omp taskgroup
{

create_a_group_of_tasks (could_create_nested_tasks);
}

Using OpenMP for Intranode Parallelism – Future OpenMP Di rections
Bronis R. de Supinski

14

� Language Committee current primary focus is
examples for new features in 4.0

� Concurrently beginning process for next version

�Process will be similar to 3.1/4.0

�Identifying potential topics

�Assessing priorities and significance

�Some issues may be considered minor (may lead to 4.1)

�Other issues are clearly more significant (must wait until 5.0)

� Next version will be well under way by SC13

We are already starting on the next
version of OpenMP (4.1? 5.0?)

Using OpenMP for Intranode Parallelism – Future OpenMP Di rections
Bronis R. de Supinski

15

� Support for memory affinity

� Refinements to accelerator support

� Transactional memory and thread level speculation

� Additional task/thread synchronization mechanisms

� Completing extension of OpenMP to Fortran 2003

� Interoperability, composability and modularity

� Incorporating tool support

We are considering several other
topics for OpenMP 5.0 and beyond

