
Performance in the HACC cosmology framework

Hal Finkel
Salman Habib, Katrin Heitmann, Adrian Pope, Vitali Morozov, et al.

July 31, 2013

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 1 / 19



Separation of Scales

The problem: Computing the particle-particle forces using an FFT-based
particle-mesh technique is the most computationally efficient, but... we’d
need an ≈ (106)3 grid capture the full dynamic range of the simulation!

The answer: A separation of scales: use the FFT-based particle-mesh
technique for as much as possible, use some less-memory-hungry technique
for the smaller scales. Plus, longer spatial scales have longer characteristic
time scales, so we can “subcycle” the smaller scale computations relative
to the long-range force computations. The short scale computations are
now rank-local!

We can write f (r1 − r2) as flong (r1− r2) + fshort(r1− r2).

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 2 / 19



Separation of Scales (cont.)

The problem: What are flong (r1− r2) and fshort(r1− r2)?

The answer: flong (r1− r2), the “grid softened force”, can be determined
empirically. The force computed by the particle-mesh technique is sampled
for many particle separations, and the resulting samples are fit by a
polynomial. fshort(r1− r2) is then trivially determined by subtraction.

The question: How to best compute fshort(r1− r2).

The answer: This depends on the architecture!

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 3 / 19



HACC

The HACC (Hybrid/Hardware Accelerated Cosmology Code) Framework
uses a P3M (Particle-Particle Particle-Mesh) algorithm on accelerated
systems and a Tree P3M method on CPU-only systems (such as the
BG/Q).

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 4 / 19



Force Splitting

The gravitational force calculation is split into long-range part and a
short-range part

A grid grid is responsible for largest 4 orders of magnitude of dynamic
range

particle methods handle the critical 2 orders of magnitude at the
shortest scales

Complexity:

PM (grid) algorithm: O(Np)+O(Ng log Ng ), where Np is the total
number of particles, and Ng the total number of grid points

tree algorithm: O(Npl log Npl), where Npl is the number of particles
in individual spatial domains (Npl � Np)

the close-range force computations are O(N2
d) where Nd is the

number of particles in a tree leaf node within which all direct
interactions are summed

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 5 / 19



Force Splitting (cont.)

Long-Range Algorithm:

The long/medium range algorithm is based on a fast, spectrally
filtered PM method

The density field is generated from the particles using a Cloud-In-Cell
(CIC) scheme

The density field is smoothed with the (isotropizing) spectral filter:

exp (−k2σ2/4) [(2k/∆) sin(k∆/2)]ns , (1)

where the nominal choices are σ = 0.8 and ns = 3. The noise reduction
from this filter allows matching the short and longer-range forces at a
spacing of 3 grid cells.

The Poisson solver uses a sixth-order, periodic, influence function
(spectral representation of the inverse Laplacian)

The gradient of the scalar potential is obtained using higher-order
spectral differencing (fourth-order Super-Lanczos)

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 6 / 19



Force Splitting (cont.)

The “Poisson-solve” is the composition of all the kernels above in one
single Fourier transform

Each component of the potential field gradient then requires an
independent FFT

Distributed FFTs use a pencil decomposition

To obtain the short-range force, the filtered grid force is subtracted
from the Newtonian force

Mixed precision:

single precision is adequate for the short/close-range particle force
evaluations and particle time-stepping

double precision is used for the spectral component

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 7 / 19



Overloading

The spatial domain decomposition is in regular 3-D blocks, but unlike the
guard zones of a typical PM method, full particle replication – termed
‘particle overloading’ – is employed across domain boundaries.

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 8 / 19



Overloading (cont.)

Works because particles cluster and large-scale bulk motion is small

Short-range force contribution is not used for particles near the edge
of the overloading region

The typical memory overhead cost for a large run is ∼ 10%

The point of overloading is to allow sufficiently-exact
medium/long-range force calculations with no communication of
particle information and high-accuracy local force calculations

We use relatively sparse refreshes of the overloading zone! This is key to
freeing the overall code performance from the weaknesses of the
underlying communications infrastructure.

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 9 / 19



Time Stepping

The time-stepping is based on a 2nd-order split-operator symplectic
SKS scheme (stream-kick-stream)

Because the characteristic time scale of the long-range force is much
smaller than that of the short-range force, we sub-cycle the
short-range force operator

The relatively slowly evolving longer range force is effectively frozen
during the shorter-range sub-cycles

Mfull(t) = Mlr (t/2)(Msr (t/nc))nc Mlr (t/2). (2)

The number of sub-cycles is nc = 3− 5, in most cases.

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 10 / 19



RCB Tree

The short-range force is computed using recursive coordinate bisection
(RCB) tree in conjunction with a highly-tuned short-range polynomial
force kernel.

Level 0

Level 1

Level 2

Level 3

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

(graphic from Gafton and Rosswog: arXiv:1108.0028)

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 11 / 19



RCB Tree (cont.)

At each level, the node is split at its center of mass

During each node split, the particles are partitioned into disjoint
adjacent memory buffers

This partitioning ensures a high degree of cache locality during the
remainder of the build and during the force evaluation

To limit the depth of the tree, each leaf node holds more than one
particle. This makes the build faster, but more importantly, trades
time in a slow procedure (a “pointer-chasing” tree walk) for a fast
procedure (the polynomial force kernel).

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 12 / 19



RCB Tree (cont.)

Another benefit of using multiple particles per leaf node:

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 13 / 19



Force Kernel

Due to the compactness of the short-range interaction, the kernel can be
represented as

fSR(s) = (s + ε)−3/2 − fgrid(s) (3)

where s = r · r, fgrid(s) = poly[5](s), and ε is a short-distance cutoff.

An interaction list is constructed during the tree walk for each leaf
node

When using fine-grained threading: using OpenMP, the particles in
the leaf node are assigned to different threads: all threads share the
interaction list (which automatically balances the computation)

The interaction list is processed using a vectorized kernel routine
(written using QPX/SSE compiler intrinsics)

Filtering for self and out-of-range interactions uses the floating-point
select instruction: no branching required

We can use the reciprocal (sqrt) estimate instructions: no library calls

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 14 / 19



Force Kernel (cont.)

Remember:

Memory motion is important! You may need to explicitly prefetch
your data.

Your compiler may not automatically pick the best loop unrolling
factor.

Modern super-computers are designed to compute low-order
polynomials: do many FMAs!

When possible, use estimates with refinement to get only the
precision that you need (for reciprocals, reciprocal sqrt, etc.).

When possible, use select and don’t branch! The compiler may not
always do this for you.

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 15 / 19



Running Configuration: Fine-Grained Threading

Using OpenMP, the particles in the leaf node are assigned to different
threads: all threads share the interaction list (which automatically
balances the computation)

We use either 8 threads per rank with 8 ranks per node, or 4 threads
per rank and 16 ranks per node

The code spends 80% of the time in the highly optimized force
kernel, 10% in the tree walk, and 5% in the FFT, all other operations
(tree build, CIC deposit) adding up to another 5%.

This code achieves over 50% of the peak FLOPS on the BG/Q!

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 16 / 19



Running Configuration: Threading over Leaf Nodes

A work queue is formed of all leaf nodes, and this queue is processed
dynamically using all available threads.

Not limited by the concurrency available in each leaf node (which has
only a few hundred particles with a collective interaction list in the
thousands).

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 17 / 19



Take-Away Message on Threading

Balanced Concurrency!

Divide the problem into as many computationally-balanced work units as
possible, and distribute those work units among the available threads.
These units need to be large enough to cover the thread-startup overhead.

When using OpenMP, don’t forget to use dynamic scheduling when the
work unit size is only balanced on average:

1 #pragma omp parallel for schedule(dynamic)
2 for (int i = 0; i < WQS; ++i) {
3 WorkQueue[i].execute();
4 }

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 18 / 19



And Think like a Compiler

On almost all HPC-relevant architectures, the compiler will never
autovectorize this (without some special directives)...

1 void foo(double ∗ restrict a, const double ∗ restrict b, const double ∗ restrict c) {
2 for (i = 0; i < 2048; ++i) {
3 if (c[i] > 0) { // for example: is the particle in range?
4 a[i] = b[i];
5 } else {
6 a[i] = 0.0;
7 }
8 }
9 }

No, it is not aliasing (that is what the ’restrict’ is for)...
No, it has nothing to do with alignment...
The compiler cannot prove that it is safe to speculatively dereference ’b’
because ’b’ could be NULL and c[i] could be always non-positive for all i.

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 19 / 19



And Think like a Compiler

On almost all HPC-relevant architectures, the compiler will never
autovectorize this (without some special directives)...

1 void foo(double ∗ restrict a, const double ∗ restrict b, const double ∗ restrict c) {
2 for (i = 0; i < 2048; ++i) {
3 if (c[i] > 0) { // for example: is the particle in range?
4 a[i] = b[i];
5 } else {
6 a[i] = 0.0;
7 }
8 }
9 }

No, it is not aliasing (that is what the ’restrict’ is for)...

No, it has nothing to do with alignment...
The compiler cannot prove that it is safe to speculatively dereference ’b’
because ’b’ could be NULL and c[i] could be always non-positive for all i.

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 19 / 19



And Think like a Compiler

On almost all HPC-relevant architectures, the compiler will never
autovectorize this (without some special directives)...

1 void foo(double ∗ restrict a, const double ∗ restrict b, const double ∗ restrict c) {
2 for (i = 0; i < 2048; ++i) {
3 if (c[i] > 0) { // for example: is the particle in range?
4 a[i] = b[i];
5 } else {
6 a[i] = 0.0;
7 }
8 }
9 }

No, it is not aliasing (that is what the ’restrict’ is for)...
No, it has nothing to do with alignment...

The compiler cannot prove that it is safe to speculatively dereference ’b’
because ’b’ could be NULL and c[i] could be always non-positive for all i.

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 19 / 19



And Think like a Compiler

On almost all HPC-relevant architectures, the compiler will never
autovectorize this (without some special directives)...

1 void foo(double ∗ restrict a, const double ∗ restrict b, const double ∗ restrict c) {
2 for (i = 0; i < 2048; ++i) {
3 if (c[i] > 0) { // for example: is the particle in range?
4 a[i] = b[i];
5 } else {
6 a[i] = 0.0;
7 }
8 }
9 }

No, it is not aliasing (that is what the ’restrict’ is for)...
No, it has nothing to do with alignment...
The compiler cannot prove that it is safe to speculatively dereference ’b’
because ’b’ could be NULL and c[i] could be always non-positive for all i.

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 19 / 19


	Design for Performance
	RCB Tree and Force Kernel
	The Force Kernel
	The Force Kernel
	Threading

