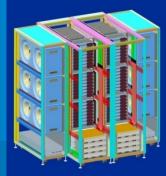

Architecting for Exascale


Argonne Training Program on Extreme-Scale Computing 2013

Tryggve Fossum Computer Architect

It sounds simple...


Take Xeon Phi CPU, lots of flops in a chip Add some memory and IO Put multiple CPU's on a board Stick many boards in a cabinet Wire up a network Fill warehouse with cabinets Call it a supercomputer!

EXA is a very big number (from Wikipedia)

Exa- (symbol **E**) is a prefix in the metric system denoting 10^{18} or 1,000,000,000,000,000,000

- Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta,...

Adopted in 1975, it comes from the Greek ξ , used as a prefix ξ , meaning six (like hexa-), because it is equal to 1000⁶

Examples:

- 1 exasecond ~ 32 billion years
- 1 exameter ~ 110 light years
- 0.43 Es \approx the age of the Universe
- 1.6 Em 172 ± 12.5 light years Diameter of Omega Centauri (one of the largest known globular clusters, perhaps containing over a million stars)

Supercomputer Performance Growth

Since Cray 1 in 1976, Supercomputer performance has grown by a factor of ~ 1000 every eleven years

- Almost doubling every year. Roughly twice the rate of general processor performance
- As measured by Linpack benchmark
- Follows history of processor architecture:
 - Vectors, Frequency, RISC, Superscalar, GPU, Multicore, back to vectors, ...

Some factors:

- Linpack performance scales with transistor count
 - New benchmark based on Conjugate Gradient on horizon
- No limit on system growth: From uniprocessor to many thousand processors
 - But Exascale goal comes with power limit of 20 Mega Watt

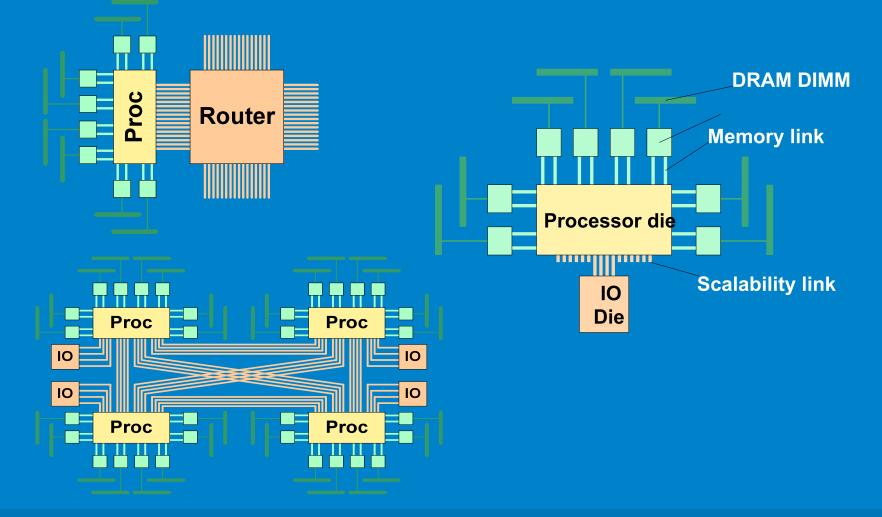
Points along the way...

Xeon Phi line: KNF, KNC, ...

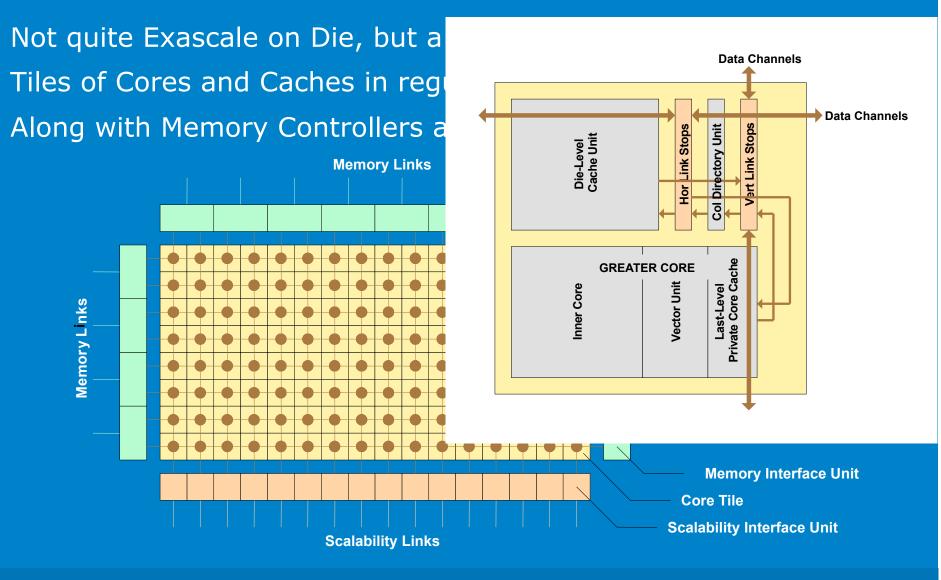
Roughly:

- Flops per core per cycle (vectors): 16
- Core Frequency: 1 GHz
 Cores per die: 60
- Sockets in the system: 6,400

Possible Evolution:


Flops -> 32 Frequency -> 2.5 GHz Core count -> 100 Sockets -> 100,000 TACC Stampede 6,400 KNCs deliver ~6 PFLOPS

10**2
10**9
10**2
10**5



Using Common Components

Chip level Multi Processing, CMP

Challenges to Exascale

Need Breakthrough Innovations Across the Board

Argonne Training Program on Extreme Scale Computing 2013

intel

Memories: The function which defies integration

"We are therefore forced to recognize the possibility of constructing a hierarchy of memories, each of which has greater capacity than the preceding but which is less quickly accessible."

A.W. Burks, H.H. Goldstine, J. von Neumann, in Preliminary Discussion of the Logical Design of Electronic Computing Instrument, Part 1, Vol 1, Report prepared for U.S. Army Ord. Dept., 28 June 1946.

Hitting the Memory Latency Wall: Implications of the Obvious [Wulf and McGee, 1994]

Memory access time, T:

 $T_{ava} = Hit_{rate} X T_{cache} + Miss_{rate} X T_{memory}$

Compulsory, Capacity, Conflict misses

 Clever (or brute force) cache design mainly helps with Capacity and Conflict misses

 \sim Every fifth instruction reads memory

When T_{avg} exceeds 5 instruction times, it may signal the end of computer architecture

Compulsory Misses (alone) will get us to the wall (at least in HPC)

This is a major reason for CMP!

What makes memory different?

Intel is a chip integration company

We integrate everything of importance

 Whole Core, FPU, Cache, HT, SSE, Multiple Cores, VPU, Memory Controller, Printer, Network, PCIe, ...

Why not memory?

- No capacity is ever enough
- The reason we want higher performance computers is to process more information
- Ideally, all the World's information fits in memory so we can access it and use it in calculations

The role of Caches

Caches – the best solution so far:

- 360/85 1969 the first production machine with cache memory
- 16KB Buffer, ¼ latency of main memory (up to 4 MB). Write thru. No allocate. Unified. 64 byte blocks
- 360/85 with cache beat out 360/91 with out of order processing

Caches are wonderful, we keep reducing miss rate, both capacity and conflict

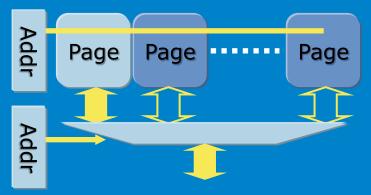
• Bigger, multi-level, more associative, better allocation, sharing, shorter latency, ECC, new functionality, ... the gift that keeps on giving

Compulsory misses call for prefetching and multi threading --- both require more bandwidth, ...

Very large caches remain mysterious

Pushing back Memory Wall

High Bandwidth Memory


- Memory Stacks
- Through Silicon Via's for high bandwidth
- And Low Power!
 - Short wires
 - Power single page!
- But low capacity

Reduce need for Memory Bandwidth

- Bigger, better caches
- Data compression on memory links
- Sub-block transfers and caching
- Active Memory Operations

Memory Memory Memory Memory CPU Logic Logic Package Substrate Board

DRAM architecture

Activate single page Lots of bandwidth per DRAM **Requires many channels** Big power saving

Memory Hierarchy

Stacked Memories

- High Bandwidth
- Low Power
- Low capacity

Traditional DIMMs

- Low Bandwidth
- High Power
- High Capacity

Third level Memory

- Low Cost
- Non Volatile.

Software challenge to control:

- Fast Malloc
- Malloc
- Slow, but Persistent, Malloc

Possible Solutions:

- Near Memory as Cache
- Blocking for Memory Hierarchy
- NUMA-like OS control

Some day all memory will be fast, large, low power, and non-volatile?

intel

Shrinking Circuits and More Cabinets, what happens to Reliability?

100 thousand sockets, 10 million cores, 40 million threads

Good solutions for memory and networks

Cores are the challenge

Detection and Recovery

- Recovery through check pointing
 - OS, Compiler, Application, HW
 - Micro level retry
- Wish for elegant solution for error detection
 - HW checkers, Self-checking software, Redundancy
- Robust Systems:
 - Co-design of software and hardware.

Power: How do we study global warming without causing it?

Miniaturization and Chip level integration saves overall power

- But creates a local power problem
- Limits physical packaging options
 - E.g. memory and network access

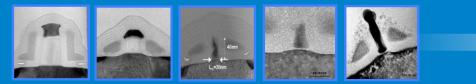
Clock gating saves dynamic power

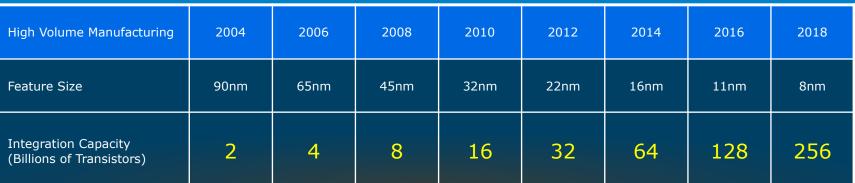
But does not help leakage power

Power gating uses power to save power

Voltage/frequency scaling still works, but range is shrinking

Need fresh ideas to get to Exascale at 20 MegaWatts

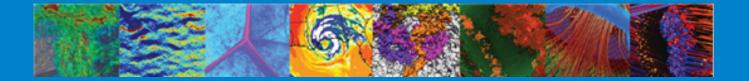

Robert Dennard's Scaling Rules for MOSFETs


R. Dennard, Hwa-Nien Yu, et al., : "Design of ion-implanted MOSFETs with very small physical dimensions," IEEE Journal of Solid State Circuits, vol SC-9, no 5, Oct 1974

Scaling factor :	κ ~ √2 ~ 1.4,	1/ к ~ 0.7
Device dimension tox, L,	W: 1/κ	
Doping Concentration, N	а: к	
Voltage, V:	1/ к	
Current, I:	1/ к	
Capacitance, εA/t,	1/ к	
Delay time/circuit, VC/I:	1/ к	
Power dissipation per cire	cuit, VI: 1/ κ²	
Power density, VI/A:	1	

Moore's Law will provide transistors

Intel process technology capabilities



Programming for Extreme Parallelism

Your text here...

