
Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

1

Writing Parallel Programs That Work

Paul Petersen (Intel)

1

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Abstract

Serial algorithms typically run inefficiently on parallel machines.
This may sound like an obvious statement, but it is the root
cause of why parallel programming is considered to be difficult.
The current state of the computer industry is still that almost all
programs in existence are serial.

This talk will describe the techniques used in the Intel Parallel
Studio to provide a developer with the tools necessary to
understand the behaviors and limitations of the existing serial
programs. Once the limitations are known the developer can
refactor the algorithms and reanalyze the resulting programs
with the tools in the Intel Parallel Studio XE to create parallel
programs that work.

2

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Remember this slide from earlier?

3

• Basic approach
• Find compute intensive loops
• Make the loop iterations independent …

so they can safely execute in any order
without loop-carried dependencies

• Place the appropriate OpenMP directive and
test

This reminds me of a rather famous cartoon:

(just use Google search on: then a miracle occurs cartoon

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

4

Where should we begin?

•Do you start with a blank sheet of paper
… or not?

1. You need to organize your ideas
– Usually by expressing a serial algorithm

2. Otherwise you may be asked to improve
software with demonstrated value
– Usually expressed by a serial implementation

– Or a process in your MPI program, another serial program

•Either way, you likely start serial

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

5

Do you really mean that?

• This loop is equivalent to: • This loop is equivalent to:

I = 0;
if (! (I < N)) goto done;

A[0] = B[0] + C[0]; // I = 0

++I;
if (! (I < N)) goto done;

A[1] = B[1] + C[1]; // I = 1
…

done:

I = 0;
if (! (I < N)) goto done;

Work(&A[0]); // I = 0

++I;
if (! (I < N)) goto done;

Work(&A[1]); // I = 1
…

done:

for (int I = 0; I < N; ++I)
A[I] = B[I] + C[I];

for (int I = 0; I < N; ++I)
Work(&A[I]);

1 2

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

6

Or did you really mean this…

A[0…N-1] = B[0…N-1] + C[0…N-1] foreach X in A[0…N-1]
Work(&X);

for (int I = 0; I < N; ++I)
A[I] = B[I] + C[I];

for (int I = 0; I < N; ++I)
Work(&A[I]);

Work(&A[0…N-1])

or even…

1 2

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

7

Digression: debugging

• What is still the #1 debugging tool in use today?
– A “print” statement

• Inserting a “print” statement into your serial program
typically does not change its behavior, but allows
observation of what is happening

• Serial languages force you to specify the semantics of your
algorithm by enforcing a specific serial execution

• Parallel languages force you to specify what is allowable to
execute in concurrently

We can use this debugging technique to bridge
the gap and observe potential parallelism

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

8

Bridging the gap

• Annotations are statements that markup existing algorithms to
express the parallel model requested

• Intel® Advisor XE accomplishes this with a core set of
modeling annotations:

– SITE (where should I focus)
– TASK (what should I do)
– LOCK (it really is serial)

• Similar to concepts in OpenMP, TBB, or Cilk – but simplified

Annotations can be considered as-if they
are “print” statements to a special trace file

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

9

Annotation: SITE (where should I focus)

Intel® Advisor XE uses a SITE to:

1. Define a name for a section of the application

2. Declare that all interesting things to analyze
occur inside of this section

3. Declare that any parallelism that is declared
will be finished before the section exits

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

10

Example: SITE

• Annotations are just statements with no visible side-effects

#include <advisor-annotate.h>
…
ANNOTATE_SITE_BEGIN(MySite);
Work(&A[0]);
Work(&A[1]);
ANNOTATE_SITE_END();
…

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

11

Annotation: TASK (what should I do)

Intel® Advisor XE uses a TASK to:

1. Define a name for a section of the application

2. Declare the statements in this section could
be executed immediately or deferred

3. Declare the statements in this section can
overlap (concurrent/parallel) execution with
other statements in the enclosing SITE

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

12

Example: TASK

• Annotations can partition the serial execution to be a specification
for parallel execution

#include <advisor-annotate.h>
…
ANNOTATE_TASK_BEGIN(MyTask0);
Work(&A[0]);
ANNOTATE_TASK_END();

ANNOTATE_TASK_BEGIN(MyTask1);
Work(&A[1]);
ANNOTATE_TASK_END();
…

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

13

Annotation: LOCK (it really is serial)

Intel® Advisor XE uses a LOCK to:

1. Define an (non-unique) name for a section of
the application

2. Declare that sections with this name are not
allowed to execute in parallel, they must be
serialized

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

14

Example: LOCK

• A LOCK is a concept familiar to developers, but it really
means a serialized section of code

• This annotation may be implemented with other non-lock
based synchronization mechanisms, such as atomic variables

#include <advisor-annotate.h>
…
ANNOTATE_LOCK_ACQUIRE(0);
globalCounter = globalCounter + 1;
ANNOTATE_LOCK_RELEASE(0);
…

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

15

What about loops?

• The combination of a SITE + TASK using a serial looping
construct can be used to model a parallel loop

#include <advisor-annotate.h>
…
ANNOTATE_SITE_BEGIN(MyLoopSite);
for (int I = 0; I < N; ++I) {
ANNOTATE_TASK_BEGIN(MyIteration);
Work(&A[I]);
ANNOTATE_TASK_END();

}
ANNOTATE_SITE_END();
…

#include <omp.h>
…
#pragma omp parallel
#pragma omp single
for (int I = 0; I < N; ++I) {
#pragma omp task

Work(&A[I]);
}
…

OpenMP equivalent

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

16

What about loops (continued)?

• The combination of a SITE + TASK can be optimized via the
ITERATION_TASK annotation

#include <advisor-annotate.h>
…
ANNOTATE_SITE_BEGIN(MyLoopSite);
for (int I = 0; I < N; ++I) {
ANNOTATE_ITERATION_TASK(MyIteration);
Work(&A[I]);

}
ANNOTATE_SITE_END();
…

#include <omp.h>
…
#pragma omp parallel for
for (int I = 0; I < N; ++I) {
Work(&A[I]);

}
…

OpenMP equivalent

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

17

• A product in Intel® Parallel Studio 2013, which is a
plug-in for Microsoft* Visual Studio, and also
available on Linux

• A design tool that assists in making good decisions
to transform a serial algorithm to use multi-core
hardware

• A serial modeling tool using annotated serial code to
calculate what might happen if that code were
executed in parallel as specified by the annotations

• A methodology and workflow to help you learn
where to use parallel programming

Intel® Advisor XE

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Why estimate performance first?

• If programs were trivial to parallelize we would
have already finished converting them

•Amdahl's law states the benefit of parallelism is a
based on the fraction of execution you parallelize

• Therefore, you must focus effort on the places that
are valuable to parallelize, not the places that are
easy to parallelize

18

Until you have a plausible parallelism model
that can achieve the benefits you want, it does
not pay to check if it can be made correct

(on an ideal machine)

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Step: Survey Target

19

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Step: Survey Target – View Sources

20

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Survey – How Does it Work?

• Statistical Call Stack Sampling

• Focus on top-down inclusive execution time

•Define a periodic timer to sample IP addresses

• Unwind the call-stack at sample points

• Statically analyze the binary to detect loops

•Display the aggregate time a sample:

– hits a basic block (IP or call stack-frame)

– a call-stack frame intersects a loop

21

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Step: Annotate Sources

22

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Step: Check Suitability

23

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Suitability – How Does It Work?

• Performance Modeling

• Gather an event trace of modeling annotations at runtime

• Build a compressed execution tree

• Simulate the execution tree

– On an ideal parallel machine

– Under varying number of threads

– With varying assumptions about overhead and scheduling

• Display the results and show how to improve the model

• The purpose is to check if the performance model is “suitable”
as a starting point for parallelization

• It is not designed as an accurate performance prediction

– Tree compression, Greedy Scheduling,

– Ideal machine, No memory model, …

24

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Suitability –
Rocks and Sand Trace Compression

25

Serial

Rock

N1 * N2 *

Rock

SandSand

Parallel

Count the rocks, but weigh the sand

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Step: Check Correctness

26

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Correctness – How Does It Work?

• Memory Trace Analysis

• Only instrument the program when inside a SITE

• Record a history of prior memory accesses

• Record the SITE/TASK structure

• When the next memory location is accessed, check:

– If the prior access was in a concurrent TASK

– If the prior access was in an equivalent LOCK context

– Either this access or the prior access was a write

• Tell the user about

– Data Communication - RAW dependence

– Memory Reuse – WAR or WAW dependence

– Inconsistent LOCK usage
27

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

What Is The Next Step?

•Great parallel performance requires real hardware
on which to tune your implementations

• Parallelism is not just relaxation of serial algorithms

28

VTune Amplifier XE

Inspector XE

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

29

Writing Parallel Programs That Work

1. You need the ability to express your computation
… usually serially

2. You need to understood the serial code
… as a specification of what computations must happen

3. You should create a parallel model of the code
… Intel® Advisor XE can be very helpful

4. You then express the parallel computation
… with your favorite parallel framework

5. You should finish by tuning on parallel hardware
… Intel® Parallel Studio XE can be very helpful

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Parallel Studio 2013 XE

• More information about Parallel Studio XE and Advisor XE is
available online, including a 30-day free trial

www.intel.com/go/parallel

•Supports Microsoft Visual Studio* 2005, 2008 and 2010.

•Support Linux

3030

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

31

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

32

Optimization Notice

Optimization Notice

Intel compilers, associated libraries and associated development tools may include or utilize options that
optimize for instruction sets that are available in both Intel and non-Intel microprocessors (for example SIMD
instruction sets), but do not optimize equally for non-Intel microprocessors. In addition, certain compiler
options for Intel compilers, including some that are not specific to Intel micro-architecture, are reserved for
Intel microprocessors. For a detailed description of Intel compiler options, including the instruction sets and
specific microprocessors they implicate, please refer to the “Intel Compiler User and Reference Guides” under
“Compiler Options." Many library routines that are part of Intel® compiler products are more highly optimized
for Intel microprocessors than for other microprocessors. While the compilers and libraries in Intel compiler
products offer optimizations for both Intel and Intel-compatible microprocessors, depending on the options
you select, your code and other factors, you likely will get extra performance on Intel microprocessors.

Intel compilers, associated libraries and associated development tools may or may not optimize to the same
degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include Intel Streaming SIMD Extensions 2 (Intel SSE2), Intel Streaming SIMD Extensions 3
(Intel SSE3), and Supplemental Streaming SIMD Extensions 3 (Intel SSSE3) instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best
performance on Intel and non-Intel microprocessors, Intel recommends that you evaluate other compilers and
libraries to determine which best meet your requirements. We hope to win your business by striving to offer
the best performance of any compiler or library; please let us know if you find we do not.

Notice revision #20110228

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

33

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino
Inside, Centrino logo, Cilk, Core Inside, FlashFile, i960, InstantIP, Intel, the Intel logo, Intel386,
Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside,
Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium
Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon
Inside are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2011. Intel Corporation.

http://intel.com/software/products

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

34

• Final step: Convert annotations into uses of a parallel framework

• Examples in three parallel frameworks are used

– Intel® Cilk™ Plus

– Intel® Threading Building Blocks (Intel® TBB)

– OpenMP*

• Converting a parallel model into explicitly parallel
implementation is straightforward

• Each parallel framework you might use has concepts similar to a
SITE, TASK, or LOCK

• Learning how common parallel framework features match
annotations allows easy conversion to an explicitly parallel
implementation

Step: Add Parallel Framework

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

35

Specialized syntax can represent our parallel models efficiently

#include <advisor-annotate.h>
…
ANNOTATE_SITE_BEGIN(MyLoopSite);
for (int I = 0; I < N; ++I) {
ANNOTATE_TASK_BEGIN(MyLoopIteration);
Work(&A[I]);

ANNOTATE_TASK_END();
}
ANNOTATE_SITE_END();
…

#pragma parallel for
for (int I = 0; I < N; ++I) {
Work(&A[I]);

}

Parallel Framework:
OpenMP

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

36

Specialized syntax can represent our parallel models efficiently

#include <advisor-annotate.h>
…
ANNOTATE_SITE_BEGIN(MyLoopSite);
for (int I = 0; I < N; ++I) {
ANNOTATE_TASK_BEGIN(MyLoopIteration);
Work(&A[I]);

ANNOTATE_TASK_END();
}
ANNOTATE_SITE_END();
…

cilk_for (int I = 0; I < N; ++I)
Work(&A[I]);

Parallel Framework:
Intel® Cilk™ Plus

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

37

Libraries can also represent our parallel models efficiently

#include <advisor-annotate.h>
…
ANNOTATE_SITE_BEGIN(MyLoopSite);
for (int I = 0; I < N; ++I) {
ANNOTATE_TASK_BEGIN(MyLoopIteration);
Work(&A[I]);

ANNOTATE_TASK_END();
}
ANNOTATE_SITE_END();
…

#include "tbb/parallel_for.h"
…
tbb::parallel_for (0, N, 1,
[=](int I) { Work (&A[I]); });

….

Parallel Framework:
Intel® Threading Building Blocks (Intel® TBB)

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

38

Exploit unique parallel framework features

#include <advisor-annotate.h>
…
ANNOTATE_ACQUIRE_BEGIN(0);
std::cout << A[I] << std::endl;
ANNOTATE_RELEASE_END(0);
…

#include <omp.h>
…
#pragma omp critical
std::cout << A[I] << std::endl;

…

Parallel Framework:
OpenMP

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

39

Exploit unique parallel framework features

#include <advisor-annotate.h>
…
ANNOTATE_ACQUIRE_BEGIN(0);
std::cout << A[I] << std::endl;
ANNOTATE_RELEASE_END(0);
…

#include <cilk/reducer_ostream.h>
…
cilk::reducer_ostream cout_reducer(std::cout);
…
cout_reducer << A[I] << std::endl;
…

Parallel Framework:
Intel® Cilk™ Plus (cont.)

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

40

Generic models can translate to specialized implementations

#include <advisor-annotate.h>
…
ANNOTATE_LOCK_ACQUIRE(0);
globalCounter = globalCounter + 1;
ANNOTATE_LOCK_RELEASE(0);
…

#include <omp.h>
…
#pragma atomic
++globalCounter;

…

Parallel Framework:
OpenMP

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

41

Generic models can translate to specialized implementations

#include <advisor-annotate.h>
…
ANNOTATE_LOCK_ACQUIRE(0);
globalCounter = globalCounter + 1;
ANNOTATE_LOCK_RELEASE(0);
…

#include “tbb/atomic.h”
…
tbb::atomic<int> globalCounter;
…
++globalCounter;
…

Parallel Framework:
Intel® TBB (cont.)

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

About the speaker

Paul Petersen is a Sr. Principal Engineer in the Software and Solutions
Group (SSG) at Intel. He received a Ph.D. degree in Computer Science
from the University of Illinois in 1993.

After UIUC, he was employed at Kuck and Associates, Inc. (KAI)
working on auto-parallelizing compiler (KAP), and was involved in the
early definition and implementations of OpenMP. While at KAI, he
developed the Assure line of parallelization/correctness products, for
Fortran, C++ and Java.

In 2000, Intel Corporation acquired KAI, and he joined the software
tools group. At Intel, he worked with the tools group to create the
Thread Checker products, which evolved into the Inspector and
Advisor components of the Intel® Parallel Studio. Inspector uses
dynamic binary instrumentation to detect memory and concurrency
bugs, and Advisor uses similar techniques along with performance
measurement and modeling to assist developers in transforming
existing serial applications to be ready for parallel execution.

42

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

• Abstract: Serial algorithms typically run very inefficiently on parallel machines. This may sound like
an obvious statement, but it is the root cause of why parallel programming is considered to be
difficult. The current state of the computer industry is still that almost all programs in existence are
serial. To address this situation, Intel has created Parallel Studio XE, and in particular Advisor XE.

• This talk will describe the techniques used in Advisor XE to provide a developer with the tools necessary
to understand the limitations of the existing serial algorithms. Once the limitations are known the
developer can refactor the algorithms and reanalyze the resulting code to see if it could run effectively
on parallel hardware. Almost all implementations of serial algorithms are serial for a reason, and the
tools available in Advisor XE help the user expose these reasons so that appropriate rewrites can be
done.

• Bio: Paul Petersen is a Sr. Principal Engineer in the Software and Solutions Group (SSG) at Intel. He
received a Ph.D. degree in Computer Science from the University of Illinois in 1993. After UIUC, he
was employed at Kuck and Associates, Inc. (KAI) working on auto-parallelizing compiler (KAP), and
was involved in the early definition and implementations of OpenMP. While at KAI, he developed the
Assure line of parallelization/correctness products, for Fortran, C++ and Java. In 2000, Intel
Corporation acquired KAI, and he joined the software tools group. At Intel, he worked with the tools
group to create the Thread Checker products, which evolved into the Inspector and Advisor
components of the Intel® Parallel Studio. Inspector uses dynamic binary instrumentation to detect
memory and concurrency bugs, and Advisor uses similar techniques along with performance
measurement and modeling to assist developers in transforming existing serial applications to be ready
for parallel execution.

43

