
Partitioned Global Address  
Space Programming 

with  
Unified Parallel C (UPC)

Kathy Yelick
Associate Laboratory Director for Computing Sciences

Lawrence Berkeley National Laboratory

EECS Professor, UC Berkeley

NERSC Represents a Broad HPC
Workload including Data and Simulation

NERSC computing for science
•  4500 users, 600 projects
•  ~65% from universities, 30% labs
•  1500 publications per year!

Systems designed for science
•  1.3PF Petaflop Cray system, Hopper
•  8 PB filesystem; 250 PB archive
• Several systems for genomics,

astronomy, visualization, etc.
~650 applications

•  75% Fortran, 45% C/C++, 10% Python
•  85% MPI, 25% with OpenMP
•  10% PGAS or global objects
•  70% with checkpointing for resilience

These are self-reported, likely low

2	

Shared Memory vs. Message Passing

Shared Memory
• Advantage: Convenience

- Can share data structures
- Just annotate loops
- Closer to serial code

• Disadvantages
- No locality control
- Does not scale
- Race conditions

Message Passing
• Advantage: Scalability

- Locality control
- Communication is all

explicit in code (cost
transparency)

• Disadvantage
- Need to rethink data

structures
- Tedious pack/unpack code
- When to say “receive”

7/31/13# 3#

0

2

4

6

8

10

12

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 6 12

768 384 256 128 64

M
em

or
y

pe
r N

od
e

(G
B

)

Ti
m

e
(s

ec
)

OpenMP threads / MPI tasks

"Running Time"
"Memory per Node"

-  Insufficient memory: user level
data and internal buffers

- Runtime overheads: copying and
synchronization

•  OpenMP, Pthreads, or other
shared memory models
- No control over locality, e.g., Non-

Uniform Memory Access
- No explicit memory movement,

e.g., accelerators or NVRAM
•  Tuning is non-obvious
-  Tradeoff between speed and

memory footprint

Limitations of Existing Programming Models

•  We can run 1 MPI process per core, but there are
problems with 6-12+ cores/socket:

Nick Wright, John Shalf et al, NERSC/Cray Center of Excellence	

4#

Programming Challenges and Solutions

Message Passing Programming
Divide up domain in pieces
Each compute one piece
Exchange (send/receive) data

PVM, MPI, and many libraries

5#

Global Address Space Programming
Each start computing
Grab whatever you need whenever

Global Address Space Languages
and Libraries

7/31/13#

Science Across the “Irregularity” Spectrum

Massive
Independent

Jobs for
Analysis and
Simulations

Nearest
Neighbor

Simulations

All-to-All
Simulations

Random
access, large
data Analysis

6#

Data analysis and simulation

7/31/13# 7#

PGAS Languages

• Global address space: thread may directly read/write remote data
•  Hides the distinction between shared/distributed memory

• Partitioned: data is designated as local or global
•  Does not hide this: critical for locality and scaling

G
lo

ba
l a

dd
re

ss
 s

pa
ce
"

x: 1
y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0# p1# pn#

7/31/13# 8#

UPC Outline

1.  Background
2.  UPC Execution Model
3.  Basic Memory Model: Shared vs. Private Scalars
4.  Synchronization
5.  Collectives
6.  Data and Pointers
7.  Dynamic Memory Management
8.  Performance
9.  Beyond UPC

History of UPC
•  Initial Tech. Report from IDA in collaboration with LLNL

and UCB in May 1999 (led by IDA).
- Based on Split-C (UCB), AC (IDA) and PCP (LLNL)

• UPC consortium participants (past and present) are:
- ARSC, Compaq, CSC, Cray Inc., Etnus, GMU, HP, IDA CCS,

Intrepid Technologies, LBNL, LLNL, MTU, NSA, SGI, Sun
Microsystems, UCB, U. Florida, US DOD
- UPC is a community effort, well beyond UCB/LBNL

• Design goals: high performance, expressive, consistent
with C goals, …, portable

• UPC Today
- Multiple vendor and open compilers (Cray, HP, IBM, SGI, gcc-upc

from Intrepid, Berkeley UPC)
- “Pseudo standard” by moving into gcc trunk
- Most widely used on irregular / graph problems today
7/31/13# 9#

7/31/13# 10#

UPC Execution
Model"

7/31/13# 11#

UPC Execution Model

•  A number of threads working independently in a SPMD
fashion
-  Number of threads specified at compile-time or run-time;

available as program variable THREADS
-  MYTHREAD specifies thread index (0..THREADS-1)
-  upc_barrier is a global synchronization: all wait
-  There is a form of parallel loop that we will see later

•  There are two compilation modes
-  Static Threads mode:

•  THREADS is specified at compile time by the user
•  The program may use THREADS as a compile-time constant

-  Dynamic threads mode:
•  Compiled code may be run with varying numbers of threads

7/31/13# 12#

Hello World in UPC

• Any legal C program is also a legal UPC program
•  If you compile and run it as UPC with P threads, it will

run P copies of the program.
• Using this fact, plus the identifiers from the previous

slides, we can parallel hello world:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {
 printf("Thread %d of %d: hello UPC world\n",
 MYTHREAD, THREADS);
}

7/31/13# 13#

Example: Monte Carlo Pi Calculation

• Estimate Pi by throwing darts at a unit square
• Calculate percentage that fall in the unit circle

- Area of square = r2 = 1
- Area of circle quadrant = ¼ * π r2 = π/4

• Randomly throw darts at x,y positions
•  If x2 + y2 < 1, then point is inside circle
• Compute ratio:

- # points inside / # points total
-  π = 4*ratio

r =1

7/31/13# 14#

Each thread calls “hit” separately

Initialize random in
math library

Each thread can use
input arguments

Each thread gets its own
copy of these variables

Pi in UPC

• Independent estimates of pi:
 main(int argc, char **argv) {
 int i, hits, trials = 0;
 double pi;

 if (argc != 2)trials = 1000000;
 else trials = atoi(argv[1]);

 srand(MYTHREAD*17);

 for (i=0; i < trials; i++) hits += hit();
 pi = 4.0*hits/trials;
 printf("PI estimated to %f.", pi);
 }

7/31/13# 15#

Helper Code for Pi in UPC

• Required includes:
 #include <stdio.h>
 #include <math.h>
 #include <upc.h>

• Function to throw dart and calculate where it hits:
 int hit(){
 int const rand_max = 0xFFFFFF;
 double x = ((double) rand()) / RAND_MAX;
 double y = ((double) rand()) / RAND_MAX;
 if ((x*x + y*y) <= 1.0) {
 return(1);
 } else {
 return(0);
 }
 }

7/31/13# 16#

Shared vs. Private
Variables"

7/31/13# 17#

Private vs. Shared Variables in UPC

• Normal C variables and objects are allocated in the private
memory space for each thread.

• Shared variables are allocated only once, with thread 0
 shared int ours; // use sparingly: performance
 int mine;

• Shared variables may not have dynamic lifetime: may not
occur in a function definition, except as static. Why?

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
mine: mine: mine:

Thread0 Thread1 Threadn

ours:

7/31/13# 18#

Pi in UPC: Shared Memory Style

• Parallel computing of pi, but with a bug
 shared int hits;
 main(int argc, char **argv) {
 int i, my_trials = 0;
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 hits += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 printf("PI estimated to %f.", 4.0*hits/trials);
 }
 }

shared variable to
record hits

divide work up evenly

accumulate hits

What is the problem with this program?

7/31/13# 19#

Shared Arrays Are Cyclic By Default

• Shared scalars always live in thread 0
• Shared arrays are spread over the threads
• Shared array elements are spread across the threads

shared int x[THREADS] /* 1 element per thread */
shared int y[3][THREADS] /* 3 elements per thread */
shared int z[3][3] /* 2 or 3 elements per thread */

•  In the pictures below, assume THREADS = 4
- Red elts have affinity to thread 0

x

y

z

As a 2D array, y is
logically blocked
by columns

Think of linearized
C array, then map
in round-robin

z is not

7/31/13# 20#

Pi in UPC: Shared Array Version

• Alternative fix to the race condition
• Have each thread update a separate counter:

- But do it in a shared array
- Have one thread compute sum

shared int all_hits [THREADS];
main(int argc, char **argv) {
 … declarations an initialization code omitted
 for (i=0; i < my_trials; i++)
 all_hits[MYTHREAD] += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 for (i=0; i < THREADS; i++) hits += all_hits[i];
 printf("PI estimated to %f.", 4.0*hits/trials);
 }
}

all_hits is
shared by all
processors,
just as hits was

update element
with local affinity

7/31/13# 21#

UPC
Synchronization"

7/31/13# 22#

UPC Global Synchronization

•  UPC has two basic forms of barriers:
-  Barrier: block until all other threads arrive

 upc_barrier
-  Split-phase barriers
 upc_notify; this thread is ready for barrier
 do computation unrelated to barrier
 upc_wait; wait for others to be ready

•  Optional labels allow for debugging
#define MERGE_BARRIER 12
if (MYTHREAD%2 == 0) {
 ...
 upc_barrier MERGE_BARRIER;
} else {
 ...
 upc_barrier MERGE_BARRIER;
}

7/31/13# 23#

Synchronization - Locks

•  Locks in UPC are represented by an opaque type:
upc_lock_t

•  Locks must be allocated before use:
upc_lock_t *upc_all_lock_alloc(void);

 allocates 1 lock, pointer to all threads
upc_lock_t *upc_global_lock_alloc(void);

 allocates 1 lock, pointer to one thread
•  To use a lock:

void upc_lock(upc_lock_t *l)
void upc_unlock(upc_lock_t *l)

 use at start and end of critical region
•  Locks can be freed when not in use

void upc_lock_free(upc_lock_t *ptr);

7/31/13# 24#

Pi in UPC: Shared Memory Style

• Parallel computing of pi, without the bug
 shared int hits;
 main(int argc, char **argv) {
 int i, my_hits, my_trials = 0;
 upc_lock_t *hit_lock = upc_all_lock_alloc();
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 upc_lock(hit_lock);
 hits += my_hits;
 upc_unlock(hit_lock);
 upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*hits/trials);
 }

create a lock

accumulate hits
locally

accumulate
across threads

7/31/13# 25#

Recap: Private vs. Shared Variables in UPC

• We saw several kinds of variables in the pi example
- Private scalars (my_hits)
- Shared scalars (hits)
- Shared arrays (all_hits)
- Shared locks (hit_lock)

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
my_hits: my_hits: my_hits:

Thread0 Thread1 Threadn

all_hits[0]:

hits:

all_hits[n]: all_hits[1]:

hit_lock:

where:
n=Threads-1

7/31/13# 26#

UPC Collectives"

7/31/13# 27#

UPC Collectives in General

•  The UPC collectives interface is in the language spec:
- http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf

•  It contains typical functions:
- Data movement: broadcast, scatter, gather, …
- Computational: reduce, prefix, …

•  Interface has synchronization modes:
- Avoid over-synchronizing (barrier before/after is simplest

semantics, but may be unnecessary)
- Data being collected may be read/written by any thread

simultaneously
•  Simple interface for collecting scalar values (int, double,…)

- Berkeley UPC value-based collectives
- Works with any compiler
- http://upc.lbl.gov/docs/user/README-collectivev.txt

7/31/13# 28#

Pi in UPC: Data Parallel Style

• The previous version of Pi works, but is not scalable:
- On a large # of threads, the locked region will be a bottleneck

• Use a reduction for better scalability

 #include <bupc_collectivev.h>
 // shared int hits;
 main(int argc, char **argv) {
 ...
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 my_hits = // type, input, thread, op
 bupc_allv_reduce(int, my_hits, 0, UPC_ADD);
 // upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*my_hits/trials);
 }

 Berkeley collectives
no shared variables

barrier implied by collective

8/1/13# 29#

Berkeley UPC (Value-Based) Collectives

•  A portable library of collectives on scalar values (not arrays)

 x = bupc_allv_reduce(double, x, 0, UPC_ADD)
 TYPE bupc_allv_reduce(TYPE, TYPE value, int rootthread, upc_op_t reductionop)

•  General arguments:
-  rootthread is the thread ID for the root (e.g., the source of a broadcast)
-  All 'value' arguments indicate an l-value (i.e., a variable or array element, not a

literal or an arbitrary expression)
-  All 'TYPE' arguments should the scalar type of collective operation
-  upc_op_t is one of: UPC_ADD, UPC_MULT, UPC_AND, UPC_OR,

UPC_XOR, UPC_LOGAND, UPC_LOGOR, UPC_MIN, UPC_MAX
•  Computational Collectives: reductions and scan (parallel prefix)
•  Data movement collectives: broadcast, scatter, gather

–  Gather takes a 'value’ from each thread and places them (in order by source
thread) into the local array on the root thread.

–  Permute perform a permutation of 'value's across all threads. Each thread
passes a value and a unique thread identifier to receive.

7/31/13# 30#

local

shared

Full UPC Collectives
- Value-based collectives pass in and return scalar values
- But sometimes you want to collect over arrays
- When can a collective argument begin executing?

•  Arguments with affinity to thread i are ready when thread i calls the
function; results with affinity to thread i are ready when thread i returns.

•  This is appealing but it is incorrect: In a broadcast, thread 1 does not
know when thread 0 is ready.

0 2 1

dst dst dst

src src src

Slide source: Steve Seidel, MTU

7/31/13# 31#

UPC Collective: Sync Flags

•  In full UPC Collectives, blocks of data may be collected
•  A extra argument of each collective function is the sync mode of type

upc_flag_t.
•  Values of sync mode are formed by or-ing together a constant of the form

UPC_IN_XSYNC and a constant of the form UPC_OUT_YSYNC, where X
and Y may be NO, MY, or ALL.

•  If sync_mode is (UPC IN_XSYNC | UPC OUT YSYNC), then if X is:
-  NO the collective function may begin to read or write data when the first thread

has entered the collective function call,
- MY the collective function may begin to read or write only data which has

affinity to threads that have entered the collective function call, and
-  ALL the collective function may begin to read or write data only after all threads

have entered the collective function call
•  and if Y is

-  NO the collective function may read and write data until the last thread has
returned from the collective function call,

- MY the collective function call may return in a thread only after all reads and
writes of data with affinity to the thread are complete3, and

-  ALL the collective function call may return only after all reads and writes of data
are complete.

7/31/13# 32#

Work Distribution
Using upc_forall

7/31/13# 33#

Example: Vector Addition

 /* vadd.c */
 #include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], sum[N];
void main() {

 int i;
 for(i=0; i<N; i++)

 if (MYTHREAD == i%THREADS)
 sum[i]=v1[i]+v2[i];

}

• Questions about parallel vector additions: #
• How to layout data (here it is cyclic)#
• Which processor does what (here it is “owner computes”)#

cyclic layout

owner computes

7/31/13# 34#

•  The idiom in the previous slide is very common
-  Loop over all; work on those owned by this proc

•  UPC adds a special type of loop
 upc_forall(init; test; loop; affinity)
 statement;

•  Programmer indicates the iterations are independent
-  Undefined if there are dependencies across threads

•  Affinity expression indicates which iterations to run on each thread.
It may have one of two types:
-  Integer: affinity%THREADS is MYTHREAD
-  Pointer: upc_threadof(affinity) is MYTHREAD

•  Syntactic sugar for loop on previous slide
-  Some compilers may do better than this, e.g.,

 for(i=MYTHREAD; i<N; i+=THREADS)
-  Rather than having all threads iterate N times:

 for(i=0; i<N; i++) if (MYTHREAD == i%THREADS)

Work Sharing with upc_forall()

7/31/13# 35#

Vector Addition with upc_forall

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

void main() {

 int i;
 upc_forall(i=0; i<N; i++; i)

 sum[i]=v1[i]+v2[i];
}

• The vadd example can be rewritten as follows
• Equivalent code could use “&sum[i]” for affinity
• The code would be correct but slow if the affinity

expression were i+1 rather than i.

The cyclic data
distribution may
perform poorly on
some machines#

7/31/13# 36#

Distributed Arrays
in UPC"

7/31/13# 37#

Blocked Layouts in UPC

#define N 100*THREADS
shared int [*] v1[N], v2[N], sum[N];

void main() {

 int i;
 upc_forall(i=0; i<N; i++; &sum[i])

 sum[i]=v1[i]+v2[i];
}

•  If this code were doing nearest neighbor averaging (3pt stencil) the
cyclic layout would be the worst possible layout.

•  Instead, want a blocked layout
•  Vector addition example can be rewritten as follows using a blocked

layout

blocked layout

7/31/13# 38#

Layouts in General

• All non-array objects have affinity with thread zero.
• Array layouts are controlled by layout specifiers:

- Empty (cyclic layout)
- [*] (blocked layout)
- [0] or [] (indefinite layout, all on 1 thread)
- [b] or [b1][b2]…[bn] = [b1*b2*…bn] (fixed block size)

• The affinity of an array element is defined in terms of:
- block size, a compile-time constant
- and THREADS.

• Element i has affinity with thread
 (i / block_size) % THREADS

•  In 2D and higher, linearize the elements as in a C
representation, and then use above mapping

7/31/13# 39#

2D Array Layouts in UPC

• Array a1 has a row layout and array a2 has a block row
layout.

 shared [m] int a1 [n][m];
 shared [k*m] int a2 [n][m];

•  If (k + m) % THREADS = = 0 them a3 has a row layout
 shared int a3 [n][m+k];
• To get more general HPF and ScaLAPACK style 2D

blocked layouts, one needs to add dimensions.
• Assume r*c = THREADS;
 shared [b1][b2] int a5 [m][n][r][c][b1][b2];
•  or equivalently
 shared [b1*b2] int a5 [m][n][r][c][b1][b2];

7/31/13# 40#

Pointers to Shared vs. Arrays

#define N 100*THREADS
shared int v1[N], v2[N], sum[N];
void main() {

int i;
shared int *p1, *p2;

p1=v1; p2=v2;
for (i=0; i<N; i++, p1++, p2++)

 if (i %THREADS= = MYTHREAD)
 sum[i]= *p1 + *p2;

}

•  In the C tradition, array can be access through pointers#
• Here is the vector addition example using pointers#

v1

p1

7/31/13# 41#

UPC Pointers

Local Global (to shared)
Private p1 p2

Shared p3 p4

Where does the pointer point?

Where
does the
pointer
reside?

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to
 shared space */
Shared to local memory (p3) is not recommended.

7/31/13# 42#

UPC Pointers

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to
 shared space */

Shared

G
lo

ba
l

ad
dr

es
s

sp
ac

e

Private
p1:

Thread0 Thread1 Threadn

p2:

p1:

p2:

p1:

p2:

p3:

p4:

p3:

p4:
p3:

p4:

Pointers to shared often require more storage and are more costly to
dereference; they may refer to local or remote memory.

7/31/13# 43#

Common Uses for UPC Pointer Types

int *p1;
•  These pointers are fast (just like C pointers)
•  Use to access local data in part of code performing local work
•  Often cast a pointer-to-shared to one of these to get faster

access to shared data that is local
shared int *p2;
•  Use to refer to remote data
•  Larger and slower due to test-for-local + possible

communication
int *shared p3;
•  Not recommended
shared int *shared p4;
•  Use to build shared linked structures, e.g., a linked list

7/31/13# 44#

UPC Pointers

•  In UPC pointers to shared objects have three fields:
-  thread number
-  local address of block
-  phase (specifies position in the block)

•  Example implementation

Phase Thread Virtual Address

0 37 38 48 49 63

Virtual Address Thread Phase

7/31/13# 45#

UPC Pointers

•  Pointer arithmetic supports blocked and non-blocked
array distributions

•  Casting of shared to private pointers is allowed but
not vice versa !

•  When casting a pointer-to-shared to a pointer-to-local,
the thread number of the pointer to shared may be
lost

•  Casting of shared to local is well defined only if the
object pointed to by the pointer to shared has affinity
with the thread performing the cast

7/31/13# 46#

Special Functions

•  size_t upc_threadof(shared void *ptr);
returns the thread number that has affinity to the pointer
to shared

•  size_t upc_phaseof(shared void *ptr);
returns the index (position within the block)field of the
pointer to shared

•  shared void *upc_resetphase(shared void *ptr); resets
the phase to zero

8/1/13# 47#

Global Memory Allocation
shared void *upc_alloc(size_t nbytes);

 nbytes : size of memory in bytes
•  Non-collective: called by one thread
•  The calling thread allocates a contiguous memory space in the shared

space with affinity to itself.
 shared [] double [n] p2 = upc_alloc(n&sizeof(double);

void upc_free(shared void *ptr);
•  Non-collective function; frees the dynamically allocated shared

memory pointed to by ptr

Shared

G
lo

ba
l

ad
dr

es
s

sp
ac

e

Private

Thread0 Thread1 Threadn

p2:

 n doubles

p2:

 n doubles

p2:

 n doubles

7/31/13# 48#

Global Memory Allocation
shared void *upc_global_alloc(size_t nblocks,

size_t nbytes);

 nblocks : number of blocks
 nbytes : block size

•  Non-collective: called by one thread
•  The calling thread allocates a contiguous memory space in the

shared space with the shape:
 shared [nbytes] char[nblocks * nbytes]

shared void *upc_all_alloc(size_t nblocks,
size_t nbytes);

•  The same result, but must be called by all threads together
•  All the threads will get the same pointer

7/31/13# 49#

Distributed Arrays Directory Style

• Many UPC programs avoid the UPC style arrays in
factor of directories of objects

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS];
directory[i]=upc_alloc(local_size*sizeof(double));

directory

• These are also more general:
• Multidimensional, unevenly distributed
• Ghost regions around blocks

physical and
conceptual
3D array
layout

7/31/13# 50#

Memory Consistency in UPC

•  The consistency model defines the order in which one thread may
see another threads accesses to memory
- If you write a program with unsychronized accesses, what

happens?
- Does this work?

data = … while (!flag) { };
flag = 1; … = data; // use the data

•  UPC has two types of accesses:
- Strict: will always appear in order
- Relaxed: May appear out of order to other threads

•  There are several ways of designating the type, commonly:
- Use the include file:

#include <upc_relaxed.h>

- Which makes all accesses in the file relaxed by default
- Use strict on variables that are used as synchronization (flag)

7/31/13# 51#

Synchronization- Fence

• Upc provides a fence construct
- Equivalent to a null strict reference, and has the

syntax
•  upc_fence;

- UPC ensures that all shared references issued
before the upc_fence are complete

7/31/13# 52#

Performance of
UPC"

Berkeley UPC Compiler "

Compiler-generated C code

UPC Runtime system

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Language-
independent

Compiler-
independent

UPC Code UPC Compiler
Used by bupc and

gcc-upc

Used by Cray
UPC, CAF,

Chapel, Titanium,
and others

7/31/13# 54#

PGAS Languages have Performance Advantages
Strategy for acceptance of a new language
• Make it run faster than anything else

Keys to high performance
• Parallelism:

- Scaling the number of processors
• Maximize single node performance

- Generate friendly code or use tuned libraries
(BLAS, FFTW, etc.)

• Avoid (unnecessary) communication cost
- Latency, bandwidth, overhead
- Berkeley UPC and Titanium use GASNet

communication layer
• Avoid unnecessary delays due to dependencies

- Load balance; Pipeline algorithmic dependencies

7/31/13# 55#

One-Sided vs Two-Sided

•  A one-sided put/get message can be handled directly by a network
interface with RDMA support
- Avoid interrupting the CPU or storing data from CPU (preposts)

•  A two-sided messages needs to be matched with a receive to
identify memory address to put data
- Offloaded to Network Interface in networks like Quadrics
- Need to download match tables to interface (from host)
- Ordering requirements on messages can also hinder bandwidth

address

message id

data payload

data payload

one-sided put message

two-sided message

network
 interface

memory

host
CPU

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

8 32 128 512 2048 8192 32768 131072 524288 2097152

B
an

dw
id

th
 (M

B
/s

)

Msg. size

Berkeley UPC

Cray UPC

Cray MPI

Bandwidths on Cray XE6 (Hopper)

7/31/13# 56#

0

2

4

6

8

10

12

UPC/MPI

7/31/13# 57#

One-Sided vs. Two-Sided: Practice

0

100

200

300

400

500

600

700

800

900

10 100 1,000 10,000 100,000 1,000,000

Size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

GASNet put (nonblock)"
MPI Flood

Relative BW (GASNet/MPI)

1.0
1.2

1.4
1.6

1.8
2.0

2.2
2.4

10 1000 100000 10000000

Size (bytes)

•  InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5
•  Half power point (N ½) differs by one order of magnitude
•  This is not a criticism of the implementation!

Joint work with Paul Hargrove and Dan Bonachea"

(u
p

is
 g

oo
d)

NERSC Jacquard
machine with
Opteron
processors

Ping Pong Latency on a Cray XE6 (Hopper)

1

10

100

1000

10000

Ti
m

e
(u

s)

UPC MPI - Large Pages MPI - Regular Pages

7/31/13# 58#

Bandwidths on Cray XE6 (Hopper)

0

1000

2000

3000

4000

5000

6000

7000

B
an

dw
id

th
 (M

B
/s

)

Message Size (Bytes)

UPC MPI Large MPI

7/31/13# 59#

7/31/13# 60#

GASNet: Portability and High-Performance
(d

ow
n

is
 g

oo
d)

GASNet better for latency across machines

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

6.6

4.5

9.5

18.5

24.2

13.5

17.8

8.3

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
ou

nd
tr

ip
 L

at
en

cy
 (u

se
c)

MPI ping-pong

GASNet put+sync

Joint work with UPC Group; GASNet design by Dan Bonachea"

7/31/13# 61#

(u
p

is
 g

oo
d)

GASNet at least as high (comparable) for large messages

Flood Bandwidth for 2MB messages

1504

630

244

857
225

610

1490799
255

858 228
795

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

(B
W

 in
 M

B
)

MPI GASNet

GASNet: Portability and High-Performance

Joint work with UPC Group; GASNet design by Dan Bonachea"

7/31/13# 62#

(u
p

is
 g

oo
d)

GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance

Flood Bandwidth for 4KB messages

547

420

190

702

152

252

750

714231

763
223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

MPI

GASNet

Joint work with UPC Group; GASNet design by Dan Bonachea"

7/31/13# 63#

Communication Strategies for 3D FFT

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea"

chunk = all rows with same destination

pencil = 1 row

•  Three approaches:
• Chunk:

•  Wait for 2nd dim FFTs to finish
•  Minimize # messages

• Slab:
•  Wait for chunk of rows destined for 1

proc to finish
•  Overlap with computation

• Pencil:
•  Send each row as it completes
•  Maximize overlap and
•  Match natural layout

slab = all rows in a single plane with
same destination

7/31/13# 64#

Overlapping Communication
•  Goal: make use of “all the wires all the time”

- Schedule communication to avoid network backup
•  Trade-off: overhead vs. overlap

- Exchange has fewest messages, less message overhead
- Slabs and pencils have more overlap; pencils the most

•  Example: Class D problem on 256 Processors

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea"

Exchange (all data at once) 512 Kbytes
Slabs (contiguous rows that go to 1 processor) 64 Kbytes

Pencils (single row) 16 Kbytes

7/31/13# 65#

NAS FT Variants Performance Summary

•  Slab is always best for MPI; small message cost too high
•  Pencil is always best for UPC; more overlap

0

200

400

600

800

1000

Myrinet 64
InfiniBand 256

Elan3 256
Elan3 512

Elan4 256
Elan4 512

M
Fl

op
s

pe
r T

hr
ea

d

Best MFlop rates for all NAS FT Benchmark versions

Best NAS Fortran/MPI
Best MPI
Best UPC

0

100

200

300

400

500

600

700

800

900

1000

1100

Myrinet 64

InfiniBand 256
Elan3 256

Elan3 512
Elan4 256

Elan4 512

M
F

lo
p
s

p
e
r

T
h
re

a
d

Best NAS Fortran/MPI

Best MPI (always Slabs)

Best UPC (always Pencils)

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea"

.5 Tflops

FFT Performance on BlueGene/P

HPC Challenge Peak as of July 09 is
~4.5 Tflops on 128k Cores

•  UPC implementation
consistently outperform
MPI

•  Uses highly optimized local
FFT library on each node

•  UPC version avoids send/
receive synchronization

•  Lower overhead
•  Better overlap
•  Better bisection

bandwidth
•  Numbers are getting close

to HPC record on BG/P

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096 8192 16384 32768

G
Fl

op
s

Num. of Cores

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs

66

G
O
O
D

7/31/13#

FFT Performance on Cray XT4

•  1024 Cores of the Cray XT4
- Uses FFTW for local FFTs
- Larger the problem size the more effective the overlap

67#

G
O
O
D

Event Driven LU in UPC

• DAG Scheduling before it’s time
• Assignment of work is static; schedule is dynamic
• Ordering needs to be imposed on the schedule

- Critical path operation: Panel Factorization
• General issue: dynamic scheduling in partitioned memory

- Can deadlock in memory allocation
- “memory constrained” lookahead

some edges omitted

7/31/13# 69#

UPC HPL Performance

•  Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid
- ScaLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)
- UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s

•  n = 32000 on a 4x4 process grid
- ScaLAPACK - 43.34 GFlop/s (block size = 64)
- UPC - 70.26 Gflop/s (block size = 200)

X1 Linpack Performance

0

200

400

600

800

1000

1200

1400

60 X1/64 X1/128

G
F

lo
p

/s

MPI/HPL

UPC

Opteron Cluster
Linpack

Performance

0

50

100

150

200

Opt/64

G
Fl

op
/s

MPI/HPL

UPC

Altix Linpack
Performance

0

20

40

60

80

100

120

140

160

Alt/32

G
F

lo
p

/s

MPI/HPL

UPC

• MPI HPL numbers
from HPCC
database

• Large scaling:
• 2.2 TFlops on 512p,
• 4.4 TFlops on 1024p
(Thunder)

Joint work with Parry Husbands"

MILC (QCD) Performance in UPC

•  MILC is Lattice Quantum Chromo-Dynamics application
•  UPC scales better than MPI when carefully optimized
7/31/13# 70#

0"

100000"

200000"

300000"

400000"

500000"

600000"

700000"

800000"

512" 1024" 2048" 4096" 8192" 16384" 32768"

Si
te
s&
/&
Se
co
nd

&&

Number&of&Cores&

UPC"Opt"

MPI"

UPC"Naïve"

A Family of PGAS Languages
•  UPC based on C philosophy / history

- http://upc-lang.org
- Free open source compiler: http://upc.lbl.gov
- Also a gcc variant: http://www.gccupc.org

•  Java dialect: Titanium
- http://titanium.cs.berkeley.edu

•  Co-Array Fortran
- Part of Stanford Fortran (subset of features)
- CAF 2.0 from Rice: http://caf.rice.edu

•  Chapel from Cray (own base language better than Java)
- http://chapel.cray.com (open source)

•  X10 from IBM also at Rice (Java, Scala,…)
- http://www.research.ibm.com/x10/

•  Phalanx from Echelon projects at NVIDIA, LBNL,…
- C++ PGAS languages with CUDA-like features for GPU clusters

•  Coming soon…. PGAS for Python, aka PyGAS
7/31/13# 71#

Application Work in PGAS

• Network simulator in UPC (Steve Hofmeyr, LBNL)
• Real-space multigrid (RMG) quantum mechanics

(Shirley Moore, UTK)
•  Landscape analysis, i.e., “Contributing Area

Estimation” in UPC (Brian Kazian, UCB)
• GTS Shifter in CAF (Preissl, Wichmann,
Long, Shalf, Ethier,
Koniges, LBNL,
Cray, PPPL)

7/31/13# 72#

7/31/13# 73#

Summary

• UPC designed to be consistent with C
- Ability to use pointers and arrays interchangeably

• Designed for high performance
- Memory consistency explicit; Small implementation
- Transparent runtime

•  gcc version of UPC:
http://www.gccupc.org/

• Berkeley compiler
http://upc.lbl.gov

•  Language specification and other documents
http://upc.gwu.edu

• Vendor compilers: Cray, IBM, HP, SGI,…

Two Distinct Parallel Programming Questions

• What is the parallel control model?

• What is the model for sharing/communication?

 synchronization may be coupled (implicit) or separate (explicit)

data parallel
(singe thread of control)

dynamic
threads

single program
multiple data (SPMD)

shared memory
load
store

send

receive

message passing

74#

PGAS load/store with partitioning for locality,
but need a “signaling store” for producer
consumer parallelism

SPMD “default” plus data parallelism through
collectives and dynamic tasking within nodes
or between nodes through libraries

7/31/13# 75#

PGAS Languages

• Global address space: thread may directly read/write remote data
•  Hides the distinction between shared/distributed memory

• Partitioned: data is designated as local or global
•  Does not hide this: critical for locality and scaling

G
lo

ba
l a

dd
re

ss
 s

pa
ce
"

x: 1
y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0# p1# pn#
•  UPC, CAF, Titanium: Static parallelism (1 thread per proc)

•  Does not virtualize processors
•  X10, Chapel and Fortress: PGAS,but not static (dynamic threads)

Arrays in a Global Address Space

• Key features of Titanium arrays
- Generality: indices may start/end and any point
- Domain calculus allow for slicing, subarray,

transpose and other operations without data copies
• Use domain calculus to identify ghosts and iterate:

 foreach (p in gridA.shrink(1).domain()) ...

• Array copies automatically work on intersection
 gridB.copy(gridA.shrink(1));

gridA gridB

“restricted” (non-
ghost) cells

ghost
cells

intersection (copied
area)

Joint work with Titanium group"

Useful in grid
computations
including AMR

7/31/13# 76#

Languages Support Helps Productivity

C++/Fortran/MPI AMR
•  Chombo package from LBNL
•  Bulk-synchronous comm:

-  Pack boundary data between procs
-  All optimizations done by programmer

Titanium AMR
•  Entirely in Titanium
•  Finer-grained communication

-  No explicit pack/unpack code
-  Automated in runtime system

•  General approach
-  Language allow programmer optimizations
-  Compiler/runtime does some automatically

Work by Tong Wen and Philip Colella; Communication optimizations joint with Jimmy Su"

0

5000

10000

15000

20000

25000

30000

Titanium C++/F/MPI
(Chombo)

Li
ne

s
of

 C
od

e

AMRElliptic

AMRTools

Util

Grid

AMR

Array

Speedup

0
10
20
30
40
50
60
70
80

16 28 36 56 112

#procs

sp
ee
du
p

Ti Chombo

7/31/13# 77#

Particle/Mesh Method: Heart Simulation

•  Elastic structures in an incompressible fluid.
- Blood flow, clotting, inner ear, embryo growth, …

•  Complicated parallelization
- Particle/Mesh method, but “Particles” connected

into materials (1D or 2D structures)
- Communication patterns irregular between particles

(structures) and mesh (fluid)

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen"

2D Dirac Delta Function

Code Size in Lines"
Fortran" Titanium"

8000" 4000"

Note: Fortran code is not parallel

7/31/13# 78#

7/31/13# 79#

PyGAS: Combine two popular ideas

• Python
- No. 6 Popular on http://langpop.com and extensive

libraries, e.g., Numpy, Scipy, Matplotlib, NetworkX
- 10% of NERSC projects use Python

• PGAS
- Convenient data and object sharing

• PyGAS : Objects can be shared via Proxies with operations
intercepted and dispatched over the network:

•  Leveraging duck typing:
•  Proxies behave like original objects.
•  Many libraries will automatically work.

num = 1+2*j
 = share(num, from=0)

print pxy.real # shared read
pxy.imag = 3 # shared write
print pxy.conjugate() # invoke

Compiler-free “UPC++” eases interoperability

global_array_t<int, 1> A(10); // shared [1] int A[10];

L-value reference (write/put)
A[1] = 1; // A[1] -> global_ref_t ref(A, 1); ref = 1;

R-value reference (read/get)
int n = A[1] + 1; // A[1] -> global_ref_t ref(A, 1); n = (int)ref + 1;

7/31/13# 81#

0.5

2

8

32

128

1 2 4 8 16 32 64 128 256

Sp
ee

du
p

Number of GPUs

Cray XK6 Performance Speedup

Matmul
FFT
SpMV

0.00

0.01

0.10

1 2 4 8 16 32 60

G
U

PS

Num. of Processes

Giga-Updates Per Second on MIC
Cluster

DEGAS C++
UPC

Hierarchical SPMD (demonstrated in Titanium)

• Thread teams may execute distinct tasks
partition(T) {
 { model_fluid(); }
 { model_muscles(); }
 { model_electrical(); }
}

• Hierarchy for machine / tasks
- Nearby: access shared data
- Far away: copy data

• Advantages:
- Provable pointer types
- Mixed data / task style
- Lexical scope prevents some deadlocks

82#

B	
C	

D	

A	 1	

2	 3	 	 4	

span	 1	
(core	 local)	
span	 2	
(processor	 local)	
span	 3	
(node	 local)	
span	 4	
(global)	

Single Program Multiple Data
(SPMD) is too restrictive

Hierarchical machines à Hierarchical programs

• Option 1: Dynamic parallelism creation
- Recursively divide until… you run out of work (or hardware)
- Runtime needs to match parallelism to hardware hierarchy

• Option 2: Hierarchical SPMD with “Mix-ins”
- Hardware threads can be grouped into units hierarchically
- Add dynamic parallelism with voluntary tasking on a group
- Add data parallelism with collectives on a group

Option 1 spreads threads, option 2 collecte them together

0	 3	 1	 2	

4	

5	

6	

7	

0	

1	

2	

3	

•  Hierarchical memory
model may be necessary
(what to expose vs hide)

•  Two approaches to
supporting the
hierarchical control

One-sided communication works everywhere

Support for one-sided communication (DMA) appears in:
•  Fast one-sided network communication (RDMA, Remote

DMA)
•  Move data to/from accelerators
•  Move data to/from I/O system (Flash, disks,..)
•  Movement of data in/out of local-store (scratchpad) memory

PGAS programming model

 *p1 = *p2 + 1;
 A[i] = B[i];

 upc_memput(A,B,64);

It is implemented using one-sided
communication: put/get

Vertical PGAS

x: 1
y:

x: 5
y:

x: 7
y: 0

Shared
partitioned
on-chip

l: m: Private on-chip

Shared
off-chip
DRAM or
NVRAM

• New type of wide pointer?
-  Points to slow (offchip memory)
- The type system could get unwieldy quickly

Bringing Users Along: UPC Experience

• Ecosystem:
- Users with a need (fine-grained random access)
- Machines with RDMA (not full hardware GAS)
- Common runtime; Commercial and free software
- Sustained funding and Center procurements

• Success models:
- Adoption by users: vectors à MPI, Python and Perl, UPC/CAF
- Influence traditional models: MPI 1-sided; OpenMP locality control
- Enable future models: Chapel, X10,… 86#
#

1991
Active Msgs
are fast

1992 First Split-C
(compiler class)

1992
First AC
(accelerators +
split memory)

1993
Split-C funding
(DOE)

1997
First UPC
Meeting

“best of” AC,
Split-C, PCP

2001
First UPC
Funding

2003 Berkeley
Compiler release

2001
gcc-upc at Intrepid

2006
UPC in NERSC
procurement

2002 GASNet
Spec

2010
Hybrid MPI/UPC

Other GASNet-based languages

In General: Communication is expensive

1

10

100

1000

10000

Pi
co

Jo
ul

es

now
2018

Communication is expensive…
 … time and energy

Cost components:

•  Bandwidth: # of words
•  Latency: # messages

Strategies

•  Overlap: hide latency
•  Avoid: algorithms to reduce bandwidth use and

number of messages (latency)

Annual improvements
Flops BW Latency

59%

Network 26% 15%
DRAM 23% 5%

Hard to change: Latency is physics; bandwidth is money!

87#

On-Chip

Off-Chip

Towards Communication-Avoiding Compilers:
Deconstructing 2.5D Matrix Multiply

Tiling the iteration space
•  Compute a subcube
•  Will need data on faces

(projection of cube, subarrays)
•  For s loops in the nest è s

dimensional space
•  For x dimensional arrays,

project to x dim space

k

j

i
Matrix Multiplication code has a 3D iteration space
Each unit cube in the space is a constant computation (*/+)

for i
 for j
 for k

B[k,j] … A[i,k] … C[i,j] …

Lower Bound Idea on C = A*B
Iromy, Toledo, Tiskin

89#

x

z

z

y

x
y

“Unit cubes” in black box with
 side lengths x, y and z
= Volume of black box
= x*y*z
= (#A□s * #B□s * #C□s)1/2

= (xz * zy * yx)1/2

k

(i,k) is in “A shadow” if (i,j,k) in 3D set
(j,k) is in “B shadow” if (i,j,k) in 3D set
(i,j) is in “C shadow” if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)
 # cubes in 3D set = Volume of 3D set
 ≤ (area(A shadow) * area(B shadow) *
 area(C shadow)) 1/2

“A shadow”

“C shadow”

j

i

Generalizing Communication Optimal
Transformations to Arbitrary Loop Nests

1.5D N-Body: Replicate and Reduce The same idea (replicate
and reduce) can be used
on (direct) N-Body code:
 1D decomposition à
“1.5D”

Does this work in general?
•  Yes, for certain loops

and array expressions
•  Relies on basic result in

group theory
•  Compiler work TBD

IPDPS’13 paper (Driscoll, Georganas, Koanantakool,
Solomonik, Yelick)

Speedup of 1.5D N-Body over 1D

3.7x

1.7x

1.8x

2.0x

6K

24K

8K

32K

of

 c
or

es

For generalization to other loop nests, see:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-61.pdf

0

10000

20000

30000

40000

50000

60000

SUMMA Cannon TRSM Cholesky

G
flo

ps

Performance results on Cray XE6
(24K cores, 32k × 32k matrices)

2.5D + Overlap
2.5D (Avoiding)
2D + Overlap
2D (Original)

Communication Overlap Complements Avoidance

•  Even with communication-optimal algorithms (minimized bandwidth) there are still
benefits to overlap and other things that speed up networks

•  Communication Avoiding and Overlapping for Numerical Linear Algebra, Georganas et
al, SC12

N-Body Speedups on IBM-BG/P (Intrepid)
8K cores, 32K particles

11.8x speedup

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik

Generalizing Communication Lower Bounds and
Optimal Algorithms

• For serial matmul, we know #words_moved = Ω (n3/M1/2),
attained by tile sizes M1/2 x M1/2

• Thm (Christ,Demmel,Knight,Scanlon,Yelick):
For any program that “smells like” nested loops, accessing
arrays with subscripts that are linear functions of the loop
indices, #words_moved = Ω (#iterations/Me), for some e
we can determine

• Thm (C/D/K/S/Y): Under some assumptions, we can
determine the optimal tiles sizes

•  Long term goal: All compilers should generate
communication optimal code from nested loops

See: http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/
EECS-2013-61.pdf

HPC: From Vector Supercomputers to
Massively Parallel Systems

Programmed by
“annotating”
serial programs

Programmed by
completely rethinking
algorithms and
software for parallelism

25% industrial use 50%

94#7/31/13#

A Brief History of Languages

• When vector machines were king
- Parallel “languages” were loop annotations (IVDEP)
- Performance was fragile, but there was good user support

• When SIMD machines were king
- Data parallel languages popular and successful (CMF, *Lisp, C*, …)
- Quite powerful: can handle irregular data (sparse mat-vec multiply)
- Irregular computation is less clear (multi-physics, adaptive meshes,

backtracking search, sparse matrix factorization)
• When shared memory multiprocessors (SMPs) were king

- Shared memory models, e.g., OpenMP, POSIX Threads, were popular
• When clusters took over

- Message Passing (MPI) became dominant
•  With multicore building blocks for clusters

- Mixed MPI + OpenMP is the preferred choice

7/31/13# 95#

