
Software Engineering and Architecting Scientific Codes 

Anshu Dubey 

ATPSEC 2013 



Software Process Components 
•  For All Codes 

–  Code Repository 
–  Build Process 
–  Code Architecture 
–  Coding Standards 
–  Verification Process 
–  Maintenance Practices 

•  If Publicly Distributed code 
–  Distribution Policies 
–  Contribution Policies 
–  Attribution Policies 

2 



Code Architecture : Important Questions 
•  What are the essential data structures 

–  State data, meta data and scratch data  
•  What are the different ways in which the data structures are 

manipulated 
–  Solver operations, housekeeping, being moved around 

•  How do various data structures interact with each other 
–  What metadata needed to correctly change state data 
–  How much scratch space is needed, where can it be reused 
–  What are the data dependencies 

•  Where are the firewalls between who can use what data and how 
–  Which part of the data can be modified by which solver 
–  Which variables can only be modified by global state change 
–  How should the data be scoped 

3 



Code Architecture : Considerations 

4 

•  Identify logically separable functional units of computation 
•  Encode the logical separation (modularity) into a framework 
•  Separate what is exposed outside the module from what is 

private to the module 
•  Define interfaces through which the modules can interact with 

each other 
•  Devise control flow – the driver 

While	  these	  are	  good	  principles	  to	  start	  with,	  they	  don’t	  always	  work	  	  
out	  easily.	  It	  may	  become	  difficult	  to	  untangle	  the	  data	  dependencies	  
or	  modularity	  might	  dictate	  code	  replica<on.	  This	  is	  where	  design	  	  

really	  becomes	  important.	  	  	  	  	  



FLASH Example 

•  Requirements for infrastructure support: 
–  AMR, and also preferably Uniform Grid 
–  Input runtime parameters 
–  IO 
–  Support for multiple species, physical constants etc 

•  Physics requirements 
–  Shock hydrodynamics /MHD 
–  Nuclear networks 
–  Equation of state and other material properties 
–  Time-stepping  
–  Lagrangian particles 



Classes of Units 
•  Infrastructure Units – do all the housekeeping 
•  Physics units – physics specific implementations 
•  Monitoring units – log the progress and performance statistics 

of the run 
•  Driver unit – implement time stepping and orchestrate the run 
•  Simulation unit – the most specialized unit 

–  Define the application 
–  Specify needed units and their specific implementations 
–  Define initial conditions and provide boundary conditions if 

needed 
–  Mechanism for customization 



Architecture : Unit 
•  FLASH basic architecture unit 

–  Different combinations of units are used for particular 
problem setups 

–  Publishes a public interface (API) for other units’ use. 
–  Ex: Driver, Grid, Hydro, IO etc 
–  Unit can have subunits 

•  Interaction between units governed by the Driver 
•  Not all units are included in all applications 

–  Not all subunits of an included unit need to be included in 
all applications 



Data Management 

•  Defined constants for globally known quantities 
•  Data ownership by individual units 

–  Arbitration on data shared by two or more units 
•  Definition of scope for groups of data 

–  Unit scope data module, one per implementation of the unit 
–  Subunit scope data module, one per implementation of the subunit 
–  All other data modules follow the general FLASH inheritance 

•  The directory in which the module exists, and all of its subdirectories have 
access to the data modules 

•  Other units can access data through available accessor functions 
•  For large scale manipulations of data residing in two or more units, 

runtime control transfers back and forth between units 
–  Avoids lateral transfer of large amounts of data 
–  Avoids performance degradation 



Unit Hierarchy 
Unit 
API/stubs 

UnitMain 
Common API 
implementation 

UnitSomething 
API  
implementation 

kernel 

kernel 

kernel 

kernel 

Impl_1 
Remaining  
API impl Impl_2 

Remaining  
API impl 

Impl_3 
Remaining  
API impl 

Common 
Impl 



Example of a Unit – Grid (simplified) 

Grid 

GridSolvers GridMain GridParticles 

UG 

Paramesh2 paramesh4 

paramesh 

PM4_package 

UG paramesh 

Sieve PttoPt 

local  
API 

Why Local API ?  
Grid_init calls init 
functions for all 
subunits, if subunit 
is not included code 
won’t build. 

PM4dev_ 
package 

GridBC 

GPMapToMesh GPMove 

etc… 



 Example of Unit Design 
•  Non trivial to design several of the physics units in ways that meet 

modularity and performance constraints. 
•  Eos (equation of state) unit is a good example 

–  Individual mesh points are independent of each other 
–  There are several reusable calculations 
–  Other physics units demand great flexibility from it 

•  single grid point 
•  only the interior cells, or only the ghost cells 
•  a row at a time, a column at a time or the entire block at once 
•  different grid data structures, and different modes at different times 

–  Implementations range from simple ideal gas law to table look up and 
iterations for degenerate matter and plasma, with widely differing 
relative contribution in the overall execution time 

–  Relative values of overall energy and internal energy play role in 
accuracy of results 

–  Sometimes several derivative quantities are desired as output 



EOS interface Design 
•  Hierarchy in complexity of interfaces  

–  For single point calculation scalar input and output 
–  For sections of a block or full block vectorized input and 

output 
•  wrappers to vectorize and configure the data 
•  returning derivative quantities if desired  

•  Different levels in the hierarchy give different degrees of 
control to the client routines 

–  Most of the complexity is completely hidden from casual 
users 

–  More sophisticated users can bypass the wrappers for 
greater control 

•  Done with elaborate machinery of masks and defined 
constants 



Functional Component in Multiple Units 
•  Example Particles 

–  Position initialization and time integration in Particles unit 
–  Data movement in Grid unit 
–  Mapping divided between Grid and Particles 

•  Solve the problem by moving control 
back and forth between units 

Driver 

Init 

Evolve 

Particles 
Init   Map    Evolve 

Grid 
Init Map Move 


