

HACC Code Architecture

Hal Finkel
ALCF

ATPESC 2013

HACC Code Architecture

● Build system
● Type neutrality
● Memory management
● Unit Conversions
● Code layout and layering
● Classic OO vs. template specialization
● Some comments on testing

HACC: Build System

● The repository has an 'environment' shell script for each
supercomputer

● The variables set by the environment script are used by
the make files

● Each subdirectory builds one or more static libraries
● Built object files, libraries, and executables are placed in

machine-specific subdirectories
● Compiler flags, svn repository information, 'svn diff', etc.

are recorded into a generated source file; this
information appears in the run logs

HACC: Type Neutrality

● Use typedef and preprocessor macros to
name different types: ID_T, POSVEL_T, etc.

● The user can select single precision vs. double
precision, 32-bit or 64-bit particle IDs, etc. at
compile time.

● Important for characterizing round-off error,
reducing memory overhead, and improving
readability.

HACC: Memory Management

● Memory use minimization drives many design decisions
in HACC.

● Both overheads and fragmentation must be reduced.
● Interfaces are designed so unnecessary copies are not

required (use pointers or C++ iterators, but not
std::vector references, for example). Many interfaces
take allocator objects to customize internal allocations.

● Memory needed only for particular parts of each time
step comes from a custom pool allocator (which is 'reset'
after each top-level operator: the grid for the FFT and the
tree for the short-range solver use the same memory)

● All particle arrays (x, y, z, etc.) are allocated together to
avoid fragmentation.

Stack vs. heap
Thread 0 stack start

(grows down)

[~4 MB by default]

Thread 1 stack start
(grows down)

...

Heap start (grows up)

Stack vs. Heap (cont.)

void foo(int n) {

 int a; // on the stack

 double x[30000]; // on the stack

 double *y = new double[3000]; // on heap

 double q[n]; // in C99, C++11, on stack!

 double *z = (double *) malloc(3000*sizeof(double));

 free(z);

 delete [] y; // remember the [] here!

}

HACC: Unit Conversions

● Particle data needs to exist in different units: physical vs.
program units; rank-local vs. global coordinates, etc.

● The 'Particles' class tracks the current units of the particle
data. Any routine which depends on the units of the
particles calls a coordinate conversion function of the
'Particles' class before accessing the particle data. If the
required units don't match the current units, a conversion
is performed.

● This kind of 'on demand' conversion tends to be both less
error-prone and more efficient than using an explicit
interface protocol between components.

HACC: Code Layout and Layering

● HACC is divided into a number of components
(initializer, FFT and poison solver, particle handling,
halo finding, etc.).

● The components sit in separate subdirectories, are built
into separate static libraries, and satisfy layering
requirements:

● If A depends on B, then B cannot depend on A!
● How do you decide what is a component: lack of cyclic

dependencies, and independent testability.
● Remember: const and restrict are part of the interface!

-- foo(const double * restrict a, double * restrict b) {}

HACC: OO and Templates

● HACC uses both classic object oriented design (including use
of virtual functions), and C++ templates.

● Classes with virtual functions are used for mixing in large
components (types of solvers, for example).

● C++ templates are used to customize performance-critical (or
sometimes memory-overhead critical) components. No virtual
function calls in inner loops!

● To maintain user flexibility we often instantiate several variants
of important templates (such as the short-range force solver).
Each variant is given a name and the user can select the
variant using the configuration file.

HACC: Testing

● Many components have unit tests (and they all should).
● Run tests under valgrind and/or address/memory sanitizer to

check for hidden problems.
● We have a set of standard test problems, and a good statistical

way (P(k) primarily) to compare the results.
● Always run a known problem before doing production science:

bugs in your code (or in the toolchain, MPI implementation,
etc.), such as use of an uninitialized variable, can make
seemingly-unrelated changes affect your answers.

● Be careful when using shared libraries: understand the
difference between -L/some/path and -Wl,-rpath,/some/path –
and make sure to note what can change underneath you! 'ldd' is
your friend.

rpath?

● -rpath and LD_RUN_PATH go into the
executable.

● When the dynamic loader (/lib*/ld*.so*) uses
the rpath, LD_LIBRARY_PATH and some
system-specific set of search paths.

● The linker also needs to find the libraries when
linking: uses -L, LIBRARY_PATH and some
system-specific set of search paths.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

