
AMR Technologies

Anshu Dubey, Mark Adams,
Ann Almgren, Brian Van Straalen

August 3, 2013

Refined regions are organized into logically-rectangular patches.!
Refinement is performed in time as well as in space.!

Block-Structured Local Refinement (Berger and Oliger, 1984)

1
n+

2

t
10 2

levellevellevel

t

t

sync sync

sync

n+1

n

t

refinement
level

•  Think of AMR as a compression technique for the discretized mesh!

•  Apply higher resolution in the domain only where it is needed!

•  When should you use AMR:!
•  When you have a multi-scale problem!
•  When a uniformly spaced grid is going to use more memory than

you have available to achieve the resolution you need!

•  You cannot always use AMR even when the above conditions are met!
•  When should you not use AMR:!

•  When the overhead costs start to exceed gains from compression!
•  When fine-coarse boundaries compromise the solution accuracy

beyond acceptability !

Why use AMR and When ?

Much%as%using%any%tool%in%scien0fic%compu0ng,%you%should%know%what%are%
the%benefits%and%limits%of%the%technologies%you%are%planning%to%use%%

•  Machinery needed for computations :!
•  Interpolation, coarsening, flux corrections and other needed

resolutions at fine-coarse boundaries!

•  Machinery needed for house keeping :!
•  The relationships between entities at the same resolution levels!
•  The relationships between entities at different resolution levels!

•  Machinery needed for parallelization :!
•  Domain decomposition and distribution among processors !

• Sometimes conflicting goals of maintaining proximity and load
balance!

•  Redistribution of computational entities when the grid changes due
to refinement!

•  Gets more complicated when the solution method moves away
from explicit solves !

The Flip Side - Complexity

•  A self contained computational
domain

•  Apply computational stencils
•  The halo cells may come from same

level exchanges or from a coarser
level through interpolation

•  If there is no sub-cycling, the
interface is simple, all patches can
get their halos filled simultaneously

•  With sub-cycling either the
application or the infrastructure can
control what to fill when

Most%structured%AMR%methods%use%the%same%abstrac0on%for%semi=implicit%solvers%
such%as%mul0grid,%in%the%sense%they%operate%on%a%block/box%at%a%0me,%the%
opera0ons%in%between%and%the%orchestra0on%gets%more%complicated%%

Abstraction for Explicit Methods

•  Locally refine patches where needed to improve the solution.!
•  Each patch is a logically rectangular structured grid.!

o  Better efficiency of data access.!
o  Can amortize overhead of irregular operations over large number

of regular operations.!
•  Refined grids are dynamically created and destroyed.!

Approach

•  Fill data at level 0 !
•  Estimate where refinement is

needed!
•  Group cells into patches

according to constraints
(refinement levels, grid
efficiency etc)!

•  Repeat for the next level!
•  Maintain proper nesting!

Building the Initial Hierarchy

How Efficiency Affects the Grid

Efficiency=0.5 Efficiency=0.7 Efficiency=0.9

•  Consider two levels, coarse and fine with refinement ratio r!

!
•  Advance !
•  Advance fine grids r times!
•  Synchronize fine and coarse data!
•  Apply recursively to all refinement levels!

Adaptive in Time

• Mixed-language model: C++ for higher-level data structures, Fortran for
regular single-grid calculations.!
• Reuseable components. Component design based on mapping of
mathematical abstractions to classes.!
• Build on public-domain standards: MPI.Chombo also uses HDF5!
• Interoperability with other tools: VisIt, PETSc,hypre.!
• The lowest levels are very similar – they had the same origin!
• Examples from Chombo!

The Two Packages: Boxlib and Chombo

(5,0)

(4,2)

(3,2)

(2,1)

(1,0)

(0,1)

(4,0)

(5,0)(3,2)

(0,0)

(2,0)

(1,1)

Distributed Data on Unions of Rectangles

Provides a general mechanism for distributing data defined on unions of
rectangles onto processors, and expressing communications between
processors.!
!

Metadata, of which all processors have a copy. BoxLayout is a collection of
Boxes and processor assignments: {Bk,pk}k=1,ngrids .
DisjointBoxLayout:public Boxlayout is a BoxLayout for which
the Boxes must be disjoint!

Data on Unions of boxes

Distributed data associated with a DisjointBoxLayout. Can have
ghost cells around each box to handle intra-level, inter-level, and domain
boundary conditions. Templated (LevelData) in Chombo.!

Interpolation from coarse to fine

•  Linearly interpolates data from
coarse cells to the overlaying
fine cells.!
•  Useful when initializing newly-
refined regions after regridding.!
!

CoarseAverage Class

•  Averages data from finer levels
to covered regions in the next
coarser level.!
•  Used for bringing coarse levels
into sync with refined grids
covering them.!
!

Coarse-Fine Interactions (AMRTools in Chombo)

The operations that couple different levels of
refinement are among the most difficult to
implement, as they typically involve a combination
of interprocessor communication and irregular
computation.!

•  Interpolation between levels (FineInterp).!
• Averaging down to coarser grids Interpolation of
boundary conditions!
•  Managing conservation at refinement
boundaries!

PiecewiseLinearFillPatch Class

Linear interpolation of coarse-
level data (in time and space)
into fine-level ghost cells.!
!

LevelFluxRegister Class

The coarse and fine fluxes are computed at different points in the
program, and on different processors. We rewrite the process in the
following steps.!

•  We have seen how construct AMR operator as series of sub-operations!
•  Coarse interpolation, fine interpolation, boundary conditions, etc.!

•  Matrix-free operators!
•  Low memory: good for performance and memory complexity!
•  Can use same technology to construct matrix-free equation solvers!

•  Operator inverse!
•  Use geometric multigrid (GMG)!
•  Inherently somewhat isotropic!

•  Some applications have complex geometry and/or anisotropy!
•  GMG looses efficacy!
•  Solution: algebraic multigrid (AMG)!

•  Need explicit matrix representation of operator!
•  Somewhat complex bookkeeping task but pretty mechanical!
•  Recently developed infrastructure in Chombo support matrix construction!
•  Apply series of transformations to matrix or stencil!

•  Similar to operator but operating matrix/stencil instead of field data!
•  Stencil: list of <Real weight, <cell, level>>!

•  Stencil + map <cell, level> to global equation number: row of matrix!
•  Start with A0 : initial operator matrix !

•  Eg, 1D 3-point stencil: {<-1.0, <i-1,lev>, <2.0, <i,lev>, <-1.0, <i+1,lev>}!

Matrix representation of operators

•  We can think of these transformations as matrix or operators operating
on one global matrix (not a good way to implement)!
•  Range and domain space of these operators is critical!

•  Start with A0 : initial operator matrix !

•  B: Boundary conditions for ghost cells off of domain!
•  Need one op. for each direction (for corner points)!

•  C: Interpolate ghost cells on domain (supported by coarse cells)!
•  F: interpolate cells covered with fine cells!

•  F removes covered cells from range and domain:
Needs two operators F2 & F1

left and right application

Result: A := F2 A0

 B C F1

Approach as matrix transformations

•  Start with raw op stencil A0, 5-point stencil

•  4 types of cells:
•  Valid (V)

•  Real degree of freedom cell in matrix
•  Boundary (B)

•  Ghost cell off of domain - BC
•  Coarse (C)

•  Ghost cell in domain
•  Fine (F)

•  Coarse cell covered by fine

• �raw� operator stencil A0 composed of all 4 types
•  Transform stencil to have only valid cells

•  B, C & F operator have
•  domain space with all types (ie, B, C, F)
•  range space w/o its corresponding cell type

•  That is, each operator filters its type
•  Thus after applying B, C & F only valid cells
remain
•  Note, F removes F cells from range and
domain:

• Needs two operators F2 & F1

• left and right application

Approach from Stencil view

A0% A0B%

A0BC% F2A0BCF1%

Cartoon of stencil for cell as it is transformed

0% 1%

3% 4%

2%11% 12%

9% 10%

7% 8%

5% 6%

Problem domain – global cell IDs

12% 13% 14% 15%

8% 9% 10% 11%

4% 5% 6% 7%

0% 1% 2% 3%

Extended patch <level=1, patch=0>

Level 0

Level 2

Example: Laplacian with 3 AMR levels
(dx = 61/2 on level 1)

(Invalid nesting region!!!)

local cell
IDs

(implicit
ordering from
box iterators)

11% 12%

9% 10%

level 2 to global IDs (GIDs) for <1,0>

*% *% *%

3% 4% 7%

2% 5%

Level 1 GIDs for <1,0>

0% 1%

Level 0 GIDs for <1,0>

Getting access to solvers from libraries

Applica0on%

Chombo%

PETSc% hypre% Sundails%

MPI%

Boxlib interoperability with solver libraries would look very similar.

=1% =4% =1% =4% 20% =4% =1% =4% =1%

=1% =4% =1% =4% 20% =4% =1% =4% =1%

=1% =4% =1% =4% 20% =4% =1% =4% =1%

=1% =4% =1% =4% 20% =4% =1% =4% =1%

5%

6%

9%

10%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%Initial FABMatrix A0

Local IDs on level 1.
Simplify notation:

eg, 5 == <5,1>

I%3x3%

I%3x3%

%I%3x3%

*%

*%

*%

5% 6% 7% 9% 10% 11% 13% 14% 15%

FABMatrix B
* = -1 for Dirichlet

* = 1 for Neumann.
Use higher order

in practice.
Split operator into

SpaceDim parts
 (x & y here).

*%

I%3x3%
*%

*%

*%

I%3x3%

*%

I%3x3%
%

*%

I%3x3%
%

0%

1%

2%

3%

4%

5%
6%
7%

8%
9%
10%
11%

12%

13%
14%
15%

5% 6% 7% 9% 10% 11% 13% 14% 15% 1% 2% 3%

5%

6%

7%

9%

10%

11%

13%

14%

15%

1%

2%

3%

Bx By

1%

1%

1%

1%

1%

1%
=1/5% 2/3% 8/15%

=1/5% 2/3% 8/15%

=1/5% 2/3% 8/15%

5% 6% 7% 9% 10% 11% 13# 14# 15#

5%

6%

7%

9%

10%

11%

13%

14%

15%

C1 =

1%

1%

1%

1%

1%

1%
1.25% =.25%

.75% .25%

.25% .75%

5% 6% 7% 9% 10% 11% <0,0>% <1,0>%

5%

6%

7%

9%

10%

11%

13#

14#

15#

C2 =

(nontrivial) Columns of C2 could be
sampled by applying
QuadCFInterp::getPhiStar to
(coarse grid) basis vectors.
New off-diagonal elements to coarse grid
equations <0,0> & <1,0>.

* (bold) �phiStar� cells live next to ghost cells.
Are not real dofs but just temporary.
Columns are interpolation in
QuadCFInterp::interpOnIVS.!
N.B. Abuse notation by using <GID,level>.
Code uses <<i,j>,level>
!

Coarse interpolation operator C (eg, QuadCFInterp)

5%

6%

7%

9%

10%

11%

<0,0>%

<1,0>%

1/4% 1/4% 1/4% 1/4%

1%

1%

1%

1%

1%

1%

1%

6% 7% 9% 10% 11% <0,0>% <1,0>% <9,2>% <10,2>% <11,2>% <12,2>%F1=

Deleting cell <5,1> and distributing it to fine grid

1%

1%

1%

6%

9%

10%

5% 6% 9% 10%F2=

Fine coverer cell interpolation (simple averaging & deleting rows)

ChomboFortran!

ChomboFortran is a set of macros used by Chombo for:!
•  Managing the C++ / Fortran Interface.!
•  Writing dimension-independent Fortran code.!

Advantages to ChomboFortran:!
•  Enables fast (2D) prototyping, and nearly immediate extension to 3D.!
•  Simplifies code maintenance and duplication by reducing the
replication of dimension-specific code.!

!

Previous C++/Fortran Interface!
•  C++ call site:!
!
heatsub2d_(soln.dataPtr(0),!
 &(soln.loVect()[0]), &(soln.hiVect()[0]),!
 &(soln.loVect()[1]), &(soln.hiVect()[1]),!
 domain.loVect(), domain.hiVect(),!
 &dt, &dx, &nu);!
!
•  Fortran code:!
!
 ! !subroutine heatsub2d(phi,iphilo0, iphihi0,iphilo1, iphihi1,!
 & domboxlo, domboxhi, dt, dx, nu)!
!
 real*8 phi(iphilo0:iphihi0,iphilo1:iphihi1)!
 real*8 dt,dx,nu!
 integer domboxlo(2),domboxhi(2)!
!
Managing such an interface is error-prone and dimensionally dependent (since 3D
will have more index arguments for array sizing).!

C++ / Fortran Interface with ChomboFortran !
•  C++ call site:!
!
 FORT_HEATSUB(CHF_FRA(soln),!
 CHF_BOX(domain),!
 CHF_REAL(dt), CHF_REAL(dx), CHF_REAL(nu));!
•  Fortran code:!
!
 subroutine heatsub(CHF_FRA[phi], CHF_BOX[domain],!
 & CHF_REAL[dt], CHF_REAL[dx], CHF_REAL[nu])!
!
ChomboFortran expands the argument lists on both sides depending on the
dimensionality of the problem. On the Fortran side, it also generates the type
declarations for the arguments automatically, along with appropriate header files to
be included in the C++ code.!

Dimension-independence with ChomboFortran !
•  Looping macros: CHF_MULTIDO!
•  Array indexing: CHF_IX!
!
Replace!
 ! do j = nlreg(2), nhreg(2)!
 do i = nlreg(1), nhreg(1)!
 phi(i,j) = phi(i,j) + nu*dt*lphi(i,j)!
 enddo!
 enddo !
!
with!
!
 CHF_MULTIDO[dombox; i;j;k]!
 phi(CHF_IX[i;j;k]) = phi(CHF_IX[i;j;k]) !
 & + nu*dt*lphi(CHF_IX[i;j;k])!
 CHF_ENDDO!
!
Prior to compilation, ChomboFortran replaces the indexing and looping macros
with code appropriate to the dimensionality of the problem. !

SPMD Parallelism

SPMD = Single Program, Multiple Data!
•  All processors execute the same code.!
•  Computation can only be done using data that is resident on the processor. !
•  Communication of data between processors is done by separate, explicit calls
to communications libraries (MPI).!
•  Chombo and Boxlib hide the low-level details of communication through higher-
level libraries, and the use of iterators that restrict computation to data that is
resident on the processor. !

ProblemDomain Class
Class that encapsulates the computational domain.!

Basic implementation: essentially a Box with periodicity information.!
In most cases, periodicity is hidden from the user and is handled as a
wrapping of the index space. !
!

BoxLayout Operations

Set of Boxes which comprise the valid
regions on a single level, including processor
assignments for each rectangular region. !

Two ways to iterate through a BoxLayout!

•  LayoutIterator – iterates through all
boxes in the BoxLayout, regardless of
which processor they are assigned to.!

•  DataIterator – iterates only through
the boxes on this processor.!
!

(4,0)

(5,0)(3,2)

(0,0)

(2,0)

(1,1)

Example

Vector<Box> boxes; // boxes and processor assignments!
Vector<int> procAssign;!
ProblemDomain domain;!
DisjointBoxLayout dbl(boxes, procAssign, domain); // define dbl!
// access _all_ boxes!
LayoutIterator lit = dbl.layoutIterator(); !
for (lit.begin(); lit.ok(); ++lit)!
{!
 const Box thisBox = dbl[lit];!
}!
// access only local boxes!
DataIterator dit = dbl.dataIterator();!
for (dit.begin(); dit.ok(); ++dit)!

{!

 const Box thisLocalBox = dbl[dit];!

}!

!

Software Reuse by Templating Dataholders
Classes can be parameterized by types, using the class template language feature
in C++.!

•  BaseFAB<T> is a multidimensional array for any type T.!

•  FArrayBox: public BaseFAB<Real>!
•  LevelData<T>, T can be any type that �looks like� a multidimensional
array.!

o  Ordinary multidimensional arrays: LevelData<FArrayBox>!

o  Binsorted lists of particles:
LevelData<BaseFAB<List<ParticleType>>>!

o  Data structures for embedded boundary methods.!
!

!

Example

DisjointBoxLayout grids;!
int nComp = 2; ! ! ! ! ! ! !// two data components!
IntVect ghostVect(IntVect::Unit) // one layer of ghost cells!
!
LevelData<FArrayBox> ldf(grids, nComp, ghostVect); !

! ! ! ! ! ! ! ! ! ! ! // Real distributed data.!
LevelData<FArrayBox> ldf2(grids, nComp, ghostVect);!
!
DataIterator dit = grids.dataIterator(); // iterate local data!
for (dit.begin(); dit.ok(); ++dit)!
{!
 FArrayBox& thisFAB = ldf[dit];!
 thisFAB.setVal(procID());!
}!
!
// fill ghost cells with "valid" data from neighboring grids!
ldf.exchange();!
 !
ldf.copyTo(ldf2); \\ copy from ldf->ldf2!
!

Example Explicit Heat Equation Solver, Parallel Case

Want to apply the same algorithm as before, except that the data for the domain is
decomposed into pieces and distributed to processors.!
!

p=0 p=1 p=2

p=3 p=0 p=1

p=2 p=3 p=0

Example Explicit Heat Equation Solver, Parallel Case

// C++ code:!
 Box domain(IntVect:Zero,(nx-1)*IntVect:Unit);!
 DisjointBoxLayout dbl;!
// Break domain into blocks, and construct the DisjointBoxLayout.!
 makeGrids(domain,dbl,nx);!
!
 LevelData<FArrayBox> phi(dbl, 1, IntVect::TheUnitVector());!
!
 for (int nstep = 0;nstep < 100;nstep++)!
 {!
…!
// Apply one time step of explicit heat solver: fill ghost cell values,!
// and apply the operator to data on each of the Boxes owned by this!
// processor.!
!
 phi.exchange();!

Example Explicit Heat Equation Solver, Parallel Case

DataIterator dit = dbl.dataIterator();!
 for (dit.reset();dit.ok();++dit)!
 {!
 FArrayBox& soln = phi[dit()];!
 Box& region = dbl[dit()];!
 FORT_HEATSUB(CHF_FRA(soln),!
 CHF_BOX(region),!
 CHF_BOX(domain),!
 CHF_REAL(dt), CHF_REAL(dx), CHF_REAL(nu));!
 }!
 }!
!

LevelFluxRegister Class

A LevelFluxRegister object encapsulates these operations.!

•  LevelFluxRegister::setToZero()!
•  LevelFluxRegister::incrementCoarse: given a flux in a
direction for one of the patches at the coarse level, increment the flux
register for that direction.!

•  LevelFluxRegister::incrementFine: given a flux in a
direction for one of the patches at the fine level, increment the flux
register with the average of that flux onto the coarser level for that
direction.!

•  LevelFluxRegister::reflux: given the data for the entire
coarse level, increment the solution with the flux register data for all of the
coordinate directions.!
!

Layer 3 Classes: Reusing control structures via inheritance
(AMRTimeDependent, AMRElliptic)

AMR has multilevel control structures that are largely independent of the
operations and data.!
•  Berger-Oliger timestepping (refinement in time).!
•  Various linear solver operations, such as multigrid on a single level, multigrid on
an AMR hierarchy.!
 To separate the control structure from the the details of the operation that are
being controlled, we use C++ inheritance in the form of interface classes.!

Elliptic Solver Example: LinearSolver virtual base class
class LinearSolver<T>!

{!

// define solver!

virtual void define(LinearOp<T>* a_operator, bool
a_homogeneous) = 0;!

!

// Solve L(phi) = rhs !

virtual void solve(T& a_phi, const T& a_rhs) = 0;!

...!

}!

LinearOp<T> defines what it means to evaluate the operator (for example,
a Poisson Operator) and other functions associated with that operator. T can
be an FArrayBox (single grid), LevelData<FArrayBox> (single-
level), Vector<LevelData<FArrayBox>*> (AMR hierarchy).!

Elliptic Solver Example
LinearOp –derived operator classes:!

•  AMRPoissonOp: constant-coefficient Poisson’s equation solver on AMR
hierarchy .!

•  VCAMRPoissonOp: variable-coefficient elliptic solver on AMR hierarchy.!

 LinearSolver –derived control-structure classes:!

•  AMRMultigrid: use multigrid to solve an elliptic equation on a
multilevel hierachy of grids, using composite AMR operators. If base
level , uses interpolated boundary conditions from coarser
level. .!

•  BiCGStabSolver: Use BiConjugate Gradient Stabilized method to
solve an elliptic equation (can be single-level, or multilevel). Useful for
variable-coefficient problems with strongly-varying coefficients. Also useful as
a �bottom solver� for AMRMultiGrid.!
!

!

Factory Classes
Instead of a single LinearOp, AMRMultigrid needs a set of
AMRPoissonOps (one for each level in the AMR hierarchy, along with
auxiliary levels required by multigrid.!
Solution: Factory classes (AMRPoissonOpFactory). The factory class
contains everything required to define the appropriate operator class at any
required spatial resolution.!
Define function for the AMR hierarchy.!

 void define(const ProblemDomain& a_coarseDomain,!
 const Vector<DisjointBoxLayout>& a_grids,!
 const Vector<int>& a_refRatios,!
 const Real& a_coarsedx,!
 BCHolder a_bc,!
 Real a_alpha = 0.,!
 Real a_beta = 1.);!
!
AMRPoissonOp* AMRnewOp(const ProblemDomain& a_indexSpace)
returns an AMRPoissonOp defined for the given level.!

 !

Example: AMR Poisson solve
 int numlevels, baselevel;!
 Vector<DisjointBoxLayout> vectGrids;!
 Vector<ProblemDomain> vectDomain;!
 Vector<int> vectRefRatio;!
 Real dxCrse; !
 setGrids(vectGrids, vectDomain,dxCrse,!
 vectRefRatio, numlevels, baselevel);!
!
 AMRPoissonOpFactory opFactory;!
 opFactory.define(vectDomain[0], vectGrids, vectRefRatio, !
 dxCrse, &bcFunc);!
!
 AMRMultiGrid solver;!
 solver.define(vectDomain[0], opFactory, &bottomSolver,
numLevels);!
 !
 Vector<LevelData<FArrayBox>* > phi(numlevels, NULL);!
 Vector<LevelData<FArrayBox>* > rhs(numlevels, NULL);!
 defineStorageAndRHS(phi, rhs, vectGrids);!
!
 solver.solveAMR(phi, rhs, numlevels-1, baseLevel);!

Example: AMR / AMRLevel Interface for Berger-Oliger
Time Stepping!

We implement this control structure using a pair of classes:!
•  class AMR: manages the timestepping process.!
•  class AMRLevel : collection of virtual functions called by an AMR object that performs
the operations on the data at a level.!

o  virtual void AMRLevel::advance() = 0 advances the data at a
level by one time step.!
o  virtual void AMRLevel::postTimeStep() = 0 performs whatever
sychronization operations required after all the finer levels have been updated.!

1
n+

2

t
10 2

levellevellevel

t

t

sync sync

sync

n+1

n

t

refinement
level

AMR / AMRLevel Interface!
 AMR has as member data a collection of pointers to objects of type AMRLevel, one for
each level of refinement.!
Vector<AMRLevel*> m_amrlevels;!
AMR calls the various member functions of AMRLevel as it advances the solution in time.!
m_amrlevels[currentLevel]->advance();!
The user implements a class derived from AMRLevel that contains all of the functions in
AMRLevel:!
class AMRLevelUpwind : public AMRLevel!
// Defines functions in the interface, as well as data.!
...!
virtual void AMRLevelUpwind::advance()!
{!
// Advances the solution for one time step.!
...}!
To use the AMR class for a particular applications, m_amrlevel[k] will point to objects
in the derived class!
AMRLevelUpwind* amrLevelUpwindPtr = new AMRLevelUpwind(...);!
m_amrlevel[k] = static_cast <AMRLevel*> (amrLevelUpwindPtr);!
 !

Upwind Advection Solver!
 Simple constant-velocity advection equation:!
!
!
!
Discretize on AMR grid using simple 1st-order upwind approach. Piecewise-
linear interpolation in space for coarse-fine boundary conditions. .!
!
Refinement in time: linear interpolation in time for coarse-fine boundary
conditions. is a conserved quantity, maintain conservation at coarse-fine
interface using refluxing.!

Upwind Advection Solver!
•  AMRLevelUpwind: public AMRLevel class derived from base
AMRLevel class, fills in specific functionality for implementing the upwind
advection algorithm.!

o  advance() – advance a single AMR level by one time step using
first-order upwind. Initialize / increment flux registers as appropriate.!
o  postTimestep() – synchronization operations: averaging next finer
level onto covered region; refluxing.!
o  tagcells(IntVectSet& tags) – specify which cells on a given
level will be tagged for refinement.!
o  regrid(const Vector<Box>& newGrids) - given a new grid
configuration for this level, re-initialize data.!
o  initialData() - initialize data at the start of the computation.!
o  computeDt() - compute the maximum allowable timestep based on
the solution on this level!

!
!
!
!

Upwind Advection Solver!

•  AMRUpwindLevelFactory: public AMRLevelFactory class
derived from base AMRLevel class, derived from base AMRLevelFactory
class. Used by AMR to define a new AMRLevelUpwind object.!

o  virtual AMRLevel* new_amrlevel – returns a pointer to a new
AMRLevelUpwind object.!

o  postTimestep() – Can also be used to pass information through to
all AMRLevelUpwind objects in a consistent manner (advection velocity,
CFL number,…)!

!

!
!

Sample Main Program! !

 // Set up the AMRLevel... factory!
 AMRLevelUpwindFactory amrLevelFact;!
 amrLevelFact.CFL(cfl);!
 amrLevelFact.advectionVel(advection_velocity);!
!
 AMR amr;!
!
 // Set up the AMR object with AMRLevelUpwindFactory!
 amr.define(maxLevel,refRatios,probDomain,&amrLevelFact);!
!
 // initialize hierarchy of levels from scratch for AMR run!
 amr.setupForNewAMRRun();!
!
 amr.run(stopTime,nstop);!
!
 amr.conclude();!
!
!
!
!

AMRLevelUpwind::advance()! !
Real AMRLevelUpwind::advance()!
{!
 // Copy the new to the old!
 m_UNew.copyTo(m_UOld);!
!
 // fill in ghost cells, if necessary !
 AMRLevelUpwind* coarserLevelPtr = NULL;!
 // interpolate from coarser level, if appropriate!
 if (m_level > 0)!
 {!
 coarserLevelPtr = getCoarserLevel();!
 !
 // get old and new coarse-level data!
 LevelData<FArrayBox>& crseDataOld = coarserLevelPtr->m_UOld;!
 LevelData<FArrayBox>& crseDataNew = coarserLevelPtr->m_UNew;!
 const DisjointBoxLayout& crseGrids = crseDataNew.getBoxes();!
!
 Real newCrseTime = coarserLevelPtr->m_time;!
 Real oldCrseTime = newCrseTime - coarserLevelPtr->m_dt;!
 Real coeff = (m_time - oldCrseTime)/coarserLevelPtr->m_dt;!
!
 !
!
!
!

AMRLevelUpwind::advance()! !
!
!
 const ProblemDomain& crseDomain = coarserLevelPtr->!

!m_problem_domain;!
 int nRefCrse = coarserLevelPtr->refRatio();!
 int nGhost = 1;!
 !
 PiecewiseLinearFillPatch filpatcher(m_grids, crseGrids,!
 m_UNew.nComp(),

! ! ! ! ! ! ! ! ! ! ! ! crseDomain,!
 nRefCrse, nGhost);!
 !
 !
 filpatcher.fillInterp(m_UOld, crseDataOld, crseDataNew, !
 coeff, 0, 0, m_UNew.nComp());!
 !
 }!
// exchange copies overlapping ghost cells on this level!
 m_UOld.exchange();!
!
!
!
!

AMRLevelUpwind::advance()!
 !
!
 // now go patch-by-patch, compute upwind flux, and do update!
 // iterator will only reference patches on this processor!
 for (dit.begin(); dit.ok(); ++dit)!
 {!
 const Box gridBox = m_grids.get(dit());!
 FArrayBox& thisOldSoln = m_UOld[dit];!
 FArrayBox& thisNewSoln = m_UNew[dit];!
 FluxBox fluxes(gridBox, thisOldSoln.nComp());!
!
 // loop over directions!
 for (int dir=0; dir<SpaceDim; dir++)!
 {!
 // note that gridbox will be the face-centered one!
 Box faceBox = fluxes[dir].box();!
 FORT_UPWIND(CHF_FRA(fluxes[dir]),!
 CHF_FRA(thisOldSoln),!
 CHF_REALVECT(m_advectionVel),!
 CHF_REAL(m_dt),!
 CHF_REAL(m_dx),!
 CHF_BOX(faceBox),!
 CHF_INT(dir));!
 !
 !

AMRLevelUpwind::advance()! !
 // increment flux registers with fluxes!
 Interval UInterval = m_UNew.interval();!
 !
 if (m_hasFiner)!
 {!
 // this level's FR goes between this level and the next finer!
 m_fluxRegister.incrementCoarse(fluxes[dir], m_dt, dit(),!
 UInterval, UInterval, dir);!
 } !
 if (m_level > 0)!
 {!
 LevelFluxRegister& crseFluxReg = coarserLevelPtr-> !

! ! !m_fluxRegister;!
!
 crseFluxReg.incrementFine(fluxes[dir], m_dt, dit(),

! ! ! ! ! ! ! ! !UInterval, UInterval, dir,
Side::Lo);!
 crseFluxReg.incrementFine(fluxes[dir], m_dt, dit(),

! ! ! ! ! !UInterval, UInterval, dir, Side::Hi);!
 }!
 } // end loop over directions!

AMRLevelUpwind::advance()! !
 !
 // do flux difference to increment solution!
 thisNewSoln.copy(thisOldSoln);!
 !
 for (int dir=0; dir<SpaceDim; dir++)!
 {!
 FORT_INCREMENTDIVDIR(CHF_FRA(thisNewSoln),!
 CHF_FRA(fluxes[dir]),!
 CHF_BOX(gridBox),!
 CHF_REAL(m_dx),!
 CHF_REAL(m_dt),!
 CHF_INT(dir));!
 } !
 } // end loop over grid boxes!
!
 // Update the time and store the new timestep!
 m_time += m_dt;!
 return m_dt;!

AMRLevelUpwind::postTimeStep()! !
 !
 void AMRLevelUpwind::postTimeStep()!
{!
 if (m_hasFiner)!
 {!
 // Reflux!
 Real scale = -1.0/m_dx;!
 m_fluxRegister.reflux(m_UNew,scale);!
!
 // Average from finer level data!
 AMRLevelUpwind* finerLevelPtr = getFinerLevel();!
 LevelData<FArrayBox>& fineU = finerLevelPtr->m_UNew;!
!
 finerLevelPtr->m_coarseAverage.averageToCoarse(m_UNew,!
 fineU);!
 }!
!
!

1.  Introduction!
2.  Layered Interface!
3.  Layer 1: BoxTools!

•  Example: explicit heat solver on a single grid.!
4.  Chombo Fortran!
5.  Layer 1, cont�d!

•  DisjointBoxLayout!
•  LevelData!
•  Parallel heat solver example!

6.  Layer 2: AMRTools!
7.  Layer 3: AMRElliptic, AMRTimeDependent!

•  Example: Advection Solver!
8.  Layer 4: AMR Applications!
9.  Utilities!
!

Outline

FAQ

• Chombo -- Swahili word meaning ``box''', ``container'', or ``useful thing'�!
•  Freely available, subject to export controls and BSD-like license
agreement!
• Requirements: C++, Fortran compilers, PERL, HDF5 (for I/O), MPI!
• Supports different precisions (float, double) through use of {\tt Real} data
type. !
• Online doxygen documentation: http://davis.lbl.gov/Manuals/CHOMBO-
CVS!
• E-mail support: chombo@anag.lbl.gov!
• Chombo users e-mail group: chombousers@hpcrd.lbl.gov!

Lowest Layer

Global index spaces:!
•  Each AMR level uses a global index space to locate points in space.!
• Each level�s index space is related to the others by simple coarsening and
refinement operations.!
• Makes it easy to organize interlevel operations and to perform operations
on unions of rectangular grids at a level.!

0

0

1

0 21

3

2

0

1 2 3 4 5

1

0

(2,1)−(2,1) (4,2)−(5,3)

IntVect Class!
Location in index space:!
Can translate ,coarsen , refine .!

IntVect iv(2,3); \\ create IntVect!
iv *= 2; \\ multiply by a factor of 2 (now (4,6)!
iv.coarsen(2); \\ coarsen by factor of 2 (now 2,3)!
!
IntVect iv2(1,2); \\ second IntVect!
iv += iv2; \\ add iv2 to iv -- iv = (3,5)!
!
int i = iv[0]; \\ access 0th component (i = 3)!

2D Example:!

Box Class!
 is a rectangle in space:!
 can be translated, coarsened , refined.
Supports different centerings (node-centered vs.
face-centered) in each coordinate direction.!

IntVect lo(1,1), hi(2,3);\\ IntVects to define box extents!
Box b(lo,hi); \\ define cell-centered box!
b.refine(2); \\ refine by factor of 2: now (2,2)-(5,7)!
b.coarsen(2); \\ coarsen: now back to (1,1)-(2,3)!
b.surroundingNodes() \\ convert to node-centering -- (1,1)-(3,4)!
b.enclosedCells() \\ back to cell-centering -- (1,1)-(2,3)!
!
Box b2(b) \\ copy constructor!
b2.shift(IntVect::Unit); \\ shift b2 by (1,1) -- now (2,2)-(3,4)!
b &= b2 ; \\ intersect b with b2 -- b now (2,2)-(2,3) !

2D Example:!

IntVectSet Class : Specific to Chombo!
 is an arbitrary subset of . Can be
shifted, coarsened, refined. !
One can take unions and intersections with
other IntVectSets and with Boxes, and
iterate over an IntVectSet. Useful for
representing irregular sets and calculations over
such sets.!

IntVect iv1, iv2, iv3; \\ various IntVects!
Box b; \\ box region!
IntVectSet ivSet(b) \\ set of all Index locations in b!
ivSet |= iv1; \\ union operator !
ivSet.refine(2); \\ refinement of IntVectSet!
ivSet.coarsen(2); \\ coarsen back to original!
ivSet -= iv2; \\ remove iv2 from intVectSet!
ivSet.grow(1); \\ grow intVectSet by a radius of 1!

2D Example:!

BaseFAB<T> Container Class!
Templated muiltidimensional array container class for (int, Real, etc)
over region defined by a Box.!

Box domain(IntVect::Zero, 3*IntVect::Unit); // box from (0,0)->(3,3)!
int nComp = 2; // 2 components!
BaseFab<int> intfab(domain, nComp); ! // define container for int's!
intfab.setVal(1); ! // set values to 1!
!
BoxIterator bit(domain); ! ! ! ! // iterator over domain!
for (bit.begin(); bit.ok(); ++bit)!
{!
 iv = bit();!
 ival(iv,0) = iv[0]; ! ! ! // set 0th component at !
} ! ! ! ! ! ! ! ! ! ! ! // iv to index !
int* ptr = ifab.dataPtr(); ! ! ! ! // pointer to the contiguous!
 ! ! ! ! ! ! ! ! ! ! ! // block of data which can !

! ! ! ! ! ! ! ! ! ! ! !// be passed to Fortran.!

2D Example:!

FArrayBox Class!
Specialized BaseFab<T> with additional floating-point operations – can
add, multiply, divide, compute norms.!

Box domain;!
FArrayBox afab(domain, 1); // define single-component FAB's!
FArrayBox bfab(domain, 1); !
!
afab.setVal(1.0); // afab = 1 everywhere!
bfab.setVal(2.0); // set bfab to be 2!
!
afab.mult(2.0); // multiply all values in afab by 2!
afab.plus(bfab); // add bfab to afab (modifying afab)!

Example:!

If%any%boxlib%specific%detail%needed%

