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DIY Parallel Data Analysis	
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“I have had my results for a long time, but I do not yet 
know how I am to arrive at them.”	


	
–Carl Friedrich Gauss, 1777-1855 



Postprocessing Scientific Data Analysis in HPC Environments���
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Examples:	

2D statistical graphics using R	


3D scientific visualization using ParaView	

Scientific visualization using VisIt	




Run-time Scientific Data Analysis in HPC Environments���
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Examples:	

GLEAN,  ADIOS,	


ParaView Coprocessing Library	


Examples:	

GLEAN,  ADIOS,	


DIY	


R, 	

ParaView,  VisIt	


Analyze	




Scientific Data Analysis Today	


•  Big science = big data, and	

•  Big data analysis => big science resources	


•  Data analysis is data intensive.	


•  Data intensity = data movement.	


•  Parallel  =  data parallel (for us)	


•  Big data => data decomposition	

•  Task parallelism, thread parallelism, while important, are 

not part of this work	

•  Most analysis algorithms are not up to the challenge	


•  Either serial, or 	


•  Communication and I/O are scalability killers	
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Visual	


Particle tracing of thermal hydraulics flow 

Statistical	


Information entropy analysis of astrophysics 

Topological	


Morse-Smale Complex of combustion 

Geometric	


Voronoi tessellation of cosmology 

Data Analysis Comes in Many Flavors	




You Have Two Choices to Parallelize Data Analysis	
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or	
By hand	
 With tools	


void ParallelAlgorithm() {	

   …	

   MPI_Send();	

   …	

   MPI_Recv();	

   …	

   MPI_Barrier();	

   …	

   MPI_File_write();	

}	


void ParallelAlgorithm() {	

   …	

   LocalAlgorithm();	

   …	

   DIY_Merge_blocks();	

   …	

   DIY_File_write()	

}	
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Library	


Written in C++ with C bindings	

Autoconf build system (configure, make, make install)	

Lightweight: libdiy.a 800KB	

Maintainable: ~15K lines of code, including examples	


DIY usage and library organization	


Features	


Parallel I/O to/from storage	

Domain decomposition	

Network communication	

Utilities	


!"#$%&'"() *"+$&%",&'"()-.((%

/)&%0+"+-1"23&30

4%&+56-789:;;;6-</== >&3&*"8?6-*"+@'

@.16-A+$B%(?6-C5$%%6-*.D

E@F

G>@

78"H52(3

I%(2&%

J%(K9")H

/++"H)#8)'

E@F

E8K(#L(+"'"() =(##$)"K&'"()
M8&N
E&'&

@OA

P3"'8-
M8+$%'+

=(#L38++"()Q'"%"'"8+ >&3&%%8%
!(3'

E&'&'0L8
=38&'"()

>&3&%%8%

DIY���
helps the user write data-parallel analysis algorithms by decomposing a 

problem into blocks and communicating items between blocks. ���



Nine Things That DIY Does	
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1. Separate analysis ops from data ops	


2. Group data items into blocks	


3. Assign blocks to processes	


4. Group blocks into neighborhoods	


5. Support multiple multiple instances of 2, 3, and 4	


6. Handle time	


7. Communicate between blocks in various ways	


8. Read data and write results	


9. Integrate with other libraries and tools	
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Writing a DIY Program	
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Tutorial Examples	

•  Block I/O: Reading data, writing analysis 

results	

•  Static: Merge-based, Swap-based reduction, 

Neighborhood exchange	


•  Time-varying: Neighborhood exchange	

•  Spare thread: Simulation and analysis 

overlap	

•  MOAB: Unstructured mesh data model	

•  VTK: Integrating DIY communication with 

VTK filters	

•  R: Integrating DIY communication with R 

stats algorithms	

•  Multimodel: multiple domains and 

communicating between them	


Documentation	

•  README for installation	

•  User’s manual with description, examples 

of custom datatypes, complete API 
reference	




Particle Tracing	
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Particle tracing of ¼ million particles in a 20483 thermal hydraulics dataset results in 
strong scaling to 32K processes and an overall improvement of 2X over earlier algorithms	




Information Entropy	
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Computation of information entropy in 126x126x512 
solar plume dataset shows 59% strong scaling efficiency.	




Morse-Smale Complex	
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Computation of Morse-Smale complex in 11523 Rayleigh-Taylor instability 
data set results in 35% end-to-end strong scaling efficiency, including I/O. 	
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For 1283 particles, 41 % strong scaling for total tessellation time, including I/O; 
comparable to simulation strong scaling.	


In Situ Voronoi Tessellation	




Further Reading	
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“The purpose of computing is insight, not numbers.”	

	
–Richard Hamming, 1962 


