
Software Engineering and Process for HPC Scientific Software

Anshu Dubey

With several slides from
Brian Van Straalen
Phil Colella

ATPSEC 2013

Why is Software Process Important
•  Modern scientific computing is no longer a solo effort

–  Most interesting modeling questions that could be
simulated by the heroic individual programming scientist
have already been investigated

–  “Productivity language” that are meant to alleviate the
complexity of programming high performance software
have not delivered yet

–  Thus, coding is complicated and requires division of
roles and responsibilities.

•  Working together on a common code is difficult unless there
is a software process

2

Software Process Components
•  For All Codes

–  Code Repository
–  Build Process
–  Code Architecture
–  Coding Standards
–  Verification Process
–  Maintenance Practices

•  If Publicly Distributed code
–  Distribution Policies
–  Contribution Policies
–  Attribution Policies

3

Code Repositories

•  Centralized Version Control!
–  CVS the first one to be heavily deployed!
–  Subversion the most commonly used!

•  Distributed Version Control!
–  Most popular ones are Git and Mercurial!
–  Synchronization through exchange of patches!
–  One can maintain multiple local branches!
–  Makes for a much easier co-existence of
production and development!

–  Gate keeping can become challenging!

4

Subversion: SVN
•  Central Repository system.

–  There is one master version of the state of the code
•  Users have “check outs” or “working copy” of the master

repository
•  Can access the master repository via several mechanisms

–  rsh connection
–  ssh connection
–  svnserver
–  All user interaction is considered a client-side operation
–  Transactional protocol

5

Working with Repositories
•  Checkout!
•  update !

–  Also a merging/concurrent process, as with CVS
•  diff [filename|directory]!
•  add [filename|directory]!
•  commit [|filename|directory]!
•  delete [filename|directory]!
•  merge!
•  branches !

6

•  You check out the head or some branch of the repository
–  This is your working copy
–  When you have modified your working copy and you want

to save your work you check in
•  What is stored is the difference between versions

–  Minimization of information since the whole history must be
maintained

–  When you do update the “diff” is merged into your working
copy

•  You can roll back as much as you like
–  Because the whole change history is maintained
–  Tools exist that translate the history and logs into web

readable information
Example : FLASH repository

Working with Repositories

•  Managing branches
–  Individuals working on some development that they don’t

want to have colliding with other developers
–  Tag a stable branch
–  Separate production from development
–  Manage multiple production projects

•  Also help with backtracking for verification
•  Aid in reproducibility of results (within the limits of having the

same software stack and hardware available)
•  In short those of us who have been using it, wouldn’t live

without it

What Else Can You Do With Repositories

Unusual Use

•  Supporting multiple set of projects from different branches is
more recent at FLASH

•  A hierarchy of project and production branches
•  A stringent merge and test schedule is important
•  How we did it :

–  Turned one of the branches into main development branch
–  Turned trunk into the merge area
–  Enforced a merge schedule
–  Enforced a policy of prioritizing the fixing of whatever broke

in the merge.

Software Process Components
•  For All Codes

–  Code Repository
–  Build Process
–  Code Architecture
–  Coding Standards
–  Verification Process
–  Maintenance Practices

•  If Publicly Distributed code
–  Distribution Policies
–  Contribution Policies
–  Attribution Policies

10

Build Process

11

•  Multiple files, individual file compilation does not scale
beyond a point

•  If the code runs on many different platforms then each
software stack will have its own peculiarities

•  The code may want to use available libraries, getting them
all built consistently may be challenging

•  For all of these reasons it is worth investing in a managed
build process

•  Usually a combination of configuration and make
•  Autoconf, perl scripts, python for configuration
•  GNU Make for compilation

Configuration - FLASH Example : Setup
Script

Python code links together needed physics
and tools for a problem

–  Traverse the FLASH source tree and link necessary files
for a given application to the object directory

–  Creates a file defining global constants set at build time
–  Builds infrastructure for mapping runtime parameters to

constants as needed
–  Configures Makefiles properly
–  Determine solution data storage list and create Flash.h
–  Generate files needed to add runtime parameters to a

given simulation.
–  Generate files needed to parse the runtime parameter file.

Setup works with Config file and local
makefile snippets
•  FLASH-specific syntax
•  Define dependencies at all levels in the source tree:

–  Lists required, requested, exclusive modules
•  Declare solution variables, fluxes
•  Declare runtime parameters

–  Sets defaults and allowable ranges – do it early!
–  Documentation – start line with “D”

•  Variables, Units are additive down the directory tree
•  Provides warnings to prevent dumb mistakes
•  Consolidates makefile snippets into a complete makefile

Config file example

Alternate local IO routines

Runtime parameters and
documentation

Additional scratch grid variable

Required Units

Enforce geometry or other conditions

Simple setup

INCLUDE Driver/DriverMain/TimeDep
INCLUDE Grid/GridMain/paramesh/Paramesh3/PM3_package/headers
INCLUDE Grid/GridMain/paramesh/Paramesh3/PM3_package/mpi_source
INCLUDE Grid/GridMain/paramesh/Paramesh3/PM3_package/source
INCLUDE Grid/localAPI
INCLUDE IO/IOMain/hdf5/serial/PM
INCLUDE PhysicalConstants/PhysicalConstantsMain
INCLUDE RuntimeParameters/RuntimeParametersMain
INCLUDE Simulation/SimulationMain/Sedov
INCLUDE flashUtilities/general
INCLUDE physics/Eos/EosMain/Gamma
INCLUDE physics/Hydro/HydroMain/split/PPM/PPMKernel
INCLUDE physics/Hydro/HydroMain/utilities

Sample Units File

GNU Make

•  Main purpose: turn a set of source code into a library or
executable.

•  Only two kinds of objects in a Makefile
–  Variables (lists of strings)
–  Rules

•  Only a few kinds of flow control
–  ifeq/ifneq/else/endif
–  No forms or looping available, no jumps, no recursion.

•  Most difficulties arising from make are related to
–  Non-trivial variable parsing of the makefile(s)
–  Rules can fire and trigger in non-obvious ways

16

The Two type of Variables in GNU Make

•  Recursively Expanded Variables “=“
foo = $(bar)
bar = $(ugh)
ugh = Huh?
all:;echo $(foo)

> make all
Huh?

•  Variable is executed at the time it is used in a command
•  = means build up a symbol table for this name
•  Notice $. Like in shell, there is the value ‘bar’ and the variable

named ‘bar’

17

•  Good points:
–  Order doesn’t matter!
–  Can declare a variable as the composite of many other

variables that can filled in by other parts of the Makefile
–  CFLAGS = $(DEBUG_FLAGS) $(OPT_FLAG) $

(LIB_FLAGS)
–  Lets a makefile build up sophisticated variables when

you don’t know all the suitable inputs, or what parts of
the Makefile they will come from

•  >make all DIM=3
•  Bad points:

–  Future = declarations can clobber what you specified
–  The last = declaration in the linear parsing of a Makefile

is the only one that matters

18

•  Simply Expanded Variables “:=“
–  Immediate mode variable.
–  The variable is assigned it’s value based on the current

state of the Makefile parsing
–  No symbol chain is created.
–  Specific to GNU Make

•  Often just an easier to understand variable.
–  It acts like variables you know in other languages.
–  can use for appending

•  CFLAGS := $(CFLAGS) –c –e –mmx

19

Rules
targets : prerequisites
[TAB] recipe

•  prerequisites are also called “sources”

•  Simple example
clobber.o : clobber.cpp clobber.h config.h!
[TAB] g++ -c –o clobber.o clobber.cpp!
clob.ex : clobber.o killerApp.o !
[TAB] g++ -o clob.ex cobber.o killerApp.o !

20

More powerful rules
•  Pattern Rules

%.o : %.cpp
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@
#Gives a pattern that can turn a .cpp file into a .o file

•  Multitarget Rules
%.f %.H : %.ChF

•  Suffix Rules
–  .c.o:

•  $(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

21

Other Makefile commands
•  include
•  $(MAKE)

–  calling a makefile from inside a recipe
–  $(MAKELEVEL) can be looked at to see how deep the

call stack is
•  export

–  send variables from this level of make to lower
makelevels

•  subst
–  CFLAGs:= $(CFLAGS) $(subst FALSE,,$(subst TRUE,-DCH_MPI $(mpicppflags),$

(MPI)))

•  foreach
–  libincludes = $(foreach i,$(LibNames),-I$(CHOMBO_HOME)/src/$i)

22

What the “make” program does
•  Much mental confusion about make comes from thinking

that the Makefile is the make program
–  Remember: Makefile is only Variables & Rules

•  make:
–  parses all of your Makefile, builds up variable chains

(overriding variables defined on command line)
–  builds up rules database, then looks at what target the

user has specified
–  then attempts to create a chain of rules from the files that

exist to the targets specified.
•  recursive “=“ variables in source-target expressions

are evaluated
–  Using the date stamp on files discovered in the chain

make executes recipes to deliver the target.
•  “=“ variables are evaluated in recipes. 23

Demonstration of the pervasive Make
‘error’

FooBar = trendy!
F:= fashion!
vars:!

@echo $(FooBar) $(F)!

ifeq ($(F),fashion)!
 FooBar=tragic!
endif!
F:= comedy!
>make vars!
tragic comedy!
>!

24

FLASH Example : Makefile
•  Each supported site has a specific Makefile.h

–  Variable defined for library locations
–  Variables for compiler being used
–  Flags for using in “debug”, “test” or “opt” mode
–  Other necessary flags

•  Every directory can have a makefile snippet
–  Exploits the recursively expanded variables
–  Makes sure to include the source files defined at that

level unless they are inherited
–  Specified local dependencies

•  The file snippets are consolidated into Makefile.Unit for
every unit

•  The Makefile.h and Makefile.Unit are “included” in the
generated Makefile

25

Software Process Components
•  For All Codes

–  Code Repository
–  Build Process
–  Code Architecture
–  Coding Standards
–  Verification Process
–  Maintenance Practices

•  If Publicly Distributed code
–  Distribution Policies
–  Contribution Policies
–  Attribution Policies

26

Hal with HACC architecture next

