SuperLU and STRUMPACK Sparse Direct Solver and Preconditioner

X. Sherry Li xsli@lbl.gov
http://crd.lbl.gov/~xiaoye/SuperLU http://portal.nersc.gov/project/sparse/strumpack/

Argonne Training Program on Extreme-Scale Computing (ATPESC) August 7, 2015

Acknowledgements

- Supports from DOE, NSF, DARPA
- FASTMath (Frameworks, Algorithms and Scalable Technologies for Mathematics)
- TOPS (Towards Optimal Petascale Simulations)
- CACHE (Communication Avoiding and Communication Hiding at Extreme Scales)
- CEMM (Center for Extended MHD Modeling)
- Developers
- SuperLU:
- Sherry Li, LBNL
- James Demmel, UC Berkeley
- John Gilbert, UC Santa Barbara
- Laura Grigori, INRIA, France
- Meiyue Shao, Umeå University, Sweden
- Piyush Sao, Gerogia Tech
- Ichitaro Yamazaki, LBNL
- STRUMPACK:
- Pieter Ghysels, Francois-Henry Rouet, Sherry Li, LBNL

SuperlU

- Download site http://crd.llbl.gov/~xiaoye/SuperLU
- Users' Guide, HTML code documentation
- Gunzip, untar
- Follow README at top level directory
- Edit make.inc for your platform (compilers, optimizations, libraries, ...) (may move to autoconf in the future)
- Link with a fast BLAS library
- The one under CBLAS/ is functional, but not optimized
- Vendor, GotoBLAS, ATLAS, ...
- In the process of creating CMake build system.

Outline of Tutorial

- Functionality
- Sparse matrix data structure, distribution, and user interface
- Background of the algorithms
- Differences between sequential and parallel solvers
- Examples, Fortran 90 interface
- Hands on exercises

Solve sparse Ax=b: lots of zeros in matrix

- fluid dynamics, structural mechanics, chemical process simulation, circuit simulation, electromagnetic fields, magneto-hydrodynamics, seismic-imaging, economic modeling, optimization, data analysis, statistics, . . .
- Example: A of dimension 106, 10~100 nonzeros per row
- Matlab: > spy(A)

Boeing/msc00726 (structural eng.)

Mallya/lhr01 (chemical eng.)

Strategies of sparse linear solvers

- Solving a system of linear equations $\mathbf{A x}=\mathrm{b}$
- Sparse: many zeros in A; worth special treatment
- Iterative methods: (e.g., Krylov, multigrid, ...)
- A is not changed (read-only)
- Key kernel: sparse matrix-vector multiply
- Easier to optimize and parallelize
- Low algorithmic complexity, but may not converge
- Direct methods
- A is modified (factorized)
- Harder to optimize and parallelize
- Numerically robust, but higher algorithmic complexity
- Often use direct method to precondition iterative method
- Solve an easy system: $\mathrm{M}^{-1} \mathrm{Ax}=\mathrm{M}^{-1} \mathrm{~b}$
- Survey of different types of factorization codes
http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf
- LL ${ }^{\text {T }}$ (s.p.d.)
- LDL ${ }^{\mathrm{T}}$ (symmetric indefinite)
- LU (nonsymmetric)
- QR (least squares)
- Sequential, shared-memory (multicore), distributed-memory, out-ofcore, few are GPU-enabled ...
- Distributed-memory codes:
- SuperLU_DIST [Li/Demmel/Grigori/Yamazaki]
- accessible from PETSc, Trilinos, ...
- MUMPS, PasTiX, WSMP, . . .

SuperLU Functionality

Eerkeley Lat

- LU decomposition, triangular solution
- Incomplete LU (ILU) preconditioner (serial SuperLU 4.0 up)
- Transposed system, multiple RHS
- Sparsity-preserving ordering
- Minimum degree ordering applied to $\mathbf{A}^{\mathrm{T}} \mathbf{A}$ or $\mathbf{A}^{\mathrm{T}}+\mathrm{A}$ [MMD, Liu ${ }^{\text {85 }}$]
- 'Nested-dissection' applied to $\mathbf{A}^{\mathrm{T}} \mathbf{A}$ or $\mathbf{A}^{\mathrm{T}}+\mathbf{A}$ [(Par)Metis, (PT)-Scotch]
- User-controllable pivoting
- Pre-assigned row and/or column permutations
- Partial pivoting with threshold
- Equilibration: $D_{r} A D_{c}$
- Condition number estimation
- Iterative refinement
- Componentwise error bounds [Skeel `79, Arioli/Demmel/Duff `89]

	SuperLU	SuperLU_MT	SuperLU_DIST
Platform	Serial	SMP, multicore	Distributed memory
Language	C	C + Pthreads or OpenMP	C + MPI + OpenMP + CUDA
Data type	Real/complex, Single/double	Real/complex, Single/double	Real/complex, Double
Data structure	CCS / CRS	CCS / CRS	Distributed CRS

- Fortran interfaces
- SuperLU_MT similar to SuperLU both numerically and in usage

Data structure: Compressed Row Storage (CRS)

- Store nonzeros row by row contiguously
- Example: $\mathrm{N}=7$, NNZ $=19$
- 3 arrays:
- Storage: NNZ reals, NNZ+N+1 integers

Many other data structures: "Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods", R. Barrett et al.

User interface - distribute input matrices

- Matrices involved:
- A, B (turned into \mathbf{X}) - input, users manipulate them
- L, U - output, users do not need to see them
- A (sparse) and B (dense) are distributed by block rows

- Natural for users, and consistent with other popular packages: e.g. PETSc

Distributed input interface

- Each process has a structure to store local part of A Distributed Compressed Row Storage

```
typedef struct {
    int_t nnz_loc; // number of nonzeros in the local submatrix
    int_t m_loc; // number of rows local to this processor
    int_t fst_row; // global index of the first row
    void *nzval; // pointer to array of nonzero values, packed by row
    int_t *colind; // pointer to array of column indices of the nonzeros
    int_t *rowptr; // pointer to array of beginning of rows in nzval[]and colind[]
    } NRformat_loc;
```


Distributed Compressed Row Storage

A is distributed on 2 processors:

P0	s		u		u
	1	u			
P1		1	p		
				e	u
		1			r

- Processor P0 data structure:
- nnz_loc = 5
- m_loc = 2
- fst_row = 0 // 0-based indexing
- nzval $=\{\mathbf{s}, \mathbf{u}, \mathbf{u}, \mathbf{l}, \mathbf{u}\}$
- colind $=\{0,2,4,0,1\}$
- rowptr $=\{0,3,5\}$
- Processor P1 data structure:
- nnz_loc = 7
- m_loc = 3
- fst_row $=2$ // 0-based indexing
- nzval $=\{1, p,|e, u| l, l, r$,
- colind $=\{1,2,3,4, \mid 0,1,4\}$
- rowptr $=\{0,2,4,7\}$

Internal : distributed L \& U factored matrices

- 2D block cyclic layout - specified by user
- Process grid should be as square as possible. Or, set the row dimension (nprow) slightly smaller than the column dimension (npcol).
- For example: $2 \times 3,2 \times 4,4 \times 4,4 \times 8$, etc.

Matrix

0	1	2	-	1	2	0
3	4	5	3	4	75	3
0	1	2	0	1	2	0
3	4	5	3	4	75	\%
0	1	2	0	1	$2 \vee$	0
3	4	5	3	4	5	$\square 3 \square$
0	1	2	0	1	2	0

Process mesh

0	1	2
3	4	5

Process grid and MPI communicator

- Example: Solving a preconditioned linear system
$\mathbf{M}^{-1} \mathbf{A} \mathbf{x}=\mathbf{M}^{-1} \mathbf{b}$
$M=\operatorname{diag}\left(A_{11}, A_{22}, A_{33}\right)$
\rightarrow use SuperLU_DIST for each diagonal block

0	1			
2	3			
		4	5	
	6	7		
				$\frac{8}{8}$
	9			

- Create 3 process grids, same logical ranks (0:3), but different physical ranks
- Each grid has its own MPI communicator

Two ways to create a process grid

- superlu_gridinit(MPI_Comm Bcomm, int nprow, int npcol, gridinfo_t *grid);
- Maps the first \{nprow, npcol\} processes in the MPI communicator Bcomm to SuperLU 2D grid
- superlu_gridmap(MPI_Comm Bcomm, int nprow, int npcol, int usermap[], int ldumap, gridinfo_t *grid);
- Maps an arbitrary set of \{nprow, npcol \} processes in the MPI communicator Bcomm to SuperLU 2D grid. The ranks of the selected MPI processes are given in usermap[] array.
For example:

	0	1	2
0	11	12	13
1	14	15	16

Sparse factorization

- Store A explicitly ... many sparse compressed formats
- "Fill-in" . . . new nonzeros in L \& U
- Typical fill-ratio: 10x for 2D problems, 30-50x for 3D problems
- Graph algorithms: directed/undirected graphs, bipartite graphs, paths, elimination trees, depth-first search, heuristics for NP-hard problems, cliques, graph partitioning, . . .
- Unfriendly to high performance, parallel computing
- Irregular memory access, indirect addressing, strong task/data dependency

Algorithmic phases in sparse GE

1. Minimize number of fill-ins, maximize parallelism ($\sim 10 \%$ time)

- Sparsity structure of $L \& U$ depends on that of A, which can be changed by row/column permutations (vertex re-labeling of the underlying graph)
- Ordering (combinatorial algorithms; "NP-complete" to find optimum [Yannakis' 83]; use heuristics)

2. Predict the fill-in positions in L \& U ($\sim 10 \%$ time)

- Symbolic factorization (combinatorial algorithms)

3. Design efficient data structure for storage and quick retrieval of the nonzeros

- Compressed storage schemes

4. Perform factorization and triangular solutions ($\sim 80 \%$ time)

- Numerical algorithms (F.P. operations only on nonzeros)
- Usually dominate the total runtime
- For sparse Cholesky and QR, the steps can be separate; For sparse LU with pivoting, steps 2 and 4 my be interleaved.
- Use (blocked) CRS or CCS, and any ordering method
- Leave room for fill-ins! (symbolic factorization)
- Exploit "supernode" (dense) structures in the factors
- Can use Level 3 BLAS
- Reduce inefficient indirect addressing (scatter/gather)
- Reduce graph traversal time using a coarser graph

Numerical Pivoting

- Goal of pivoting is to control element growth in $L \& \in$ for stability
- For sparse factorizations, often relax the pivoting rule to trade with better sparsity and parallelism (e.g., threshold pivoting, static pivoting , . . .)
- Partial pivoting used in sequential SuperLU and SuperLU_MT (GEPP)
- Can force diagonal pivoting (controlled by diagonal threshold)
- Hard to implement scalably for sparse factorization
- Static pivoting used in SuperLU_DIST (GESP)

- Before factor, scale and permute A to maximize diagonal: $P_{r} D_{r} A D_{c}=A^{\prime}$
- During factor $\mathbf{A}^{\prime}=\mathbf{L U}$, replace tiny pivots by $\sqrt{\varepsilon}\|A\|$, without changing data structures for $\mathbf{L} \& \mathbf{U}$
- If needed, use a few steps of iterative refinement after the first solution
\rightarrow quite stable in practice

Ordering : Minimum Degree

Local greedy: minimize upper bound on fill-in

Ordering : Nested Dissection

- Model problem: discretized system $\mathbf{A x}=\mathrm{b}$ from certain PDEs, e.g., 5-point stencil on $n \times n$ grid, $N=n^{2}$
- Factorization flops: $\mathbf{O}\left(\mathbf{n}^{3}\right)=\mathbf{O}\left(N^{3 / 2}\right)$
- Theorem: ND ordering gives optimal complexity in exact arithmetic [George ' 73 , Hoffman/Martin/Rose]

- Generalized nested dissection [Lipton/Rose/Tarjan ' 79]
- Global graph partitioning: top-down, divide-and-conqure
- Best for largest problems
- Parallel codes available: ParMetis, PT-Scotch
- First level

- Recurse on A and B
- Goal: find the smallest possible separator S at each level
- Multilevel schemes:
- Chaco [Hendrickson/Leland `94], Metis [Karypis/Kumar`95]
- Spectral bisection [Simon et al. ${ }^{-90}$ - 95]
- Geometric and spectral bisection [Chan/Gilbert/Teng `94]

ND Ordering

2D mesh

A, with ND ordering

A, with row-wise ordering

L \& U factors

Ordering for LU (unsymmetric)

- Can use a symmetric ordering on a symmetrized matrix
- Case of partial pivoting (serial SuperLU, SuperLU_MT):

Use ordering based on $\mathbf{A}^{\mathrm{T} *} \mathrm{~A}$

- Case of static pivoting (SuperLU_DIST):

Use ordering based on $\mathbf{A}^{\mathbf{T}}+\mathbf{A}$

- Can find better ordering based solely on A, without symmetrization
- Diagonal Markowitz [Amestoy/Li/Ng`06]
- Similar to minimum degree, but without symmetrization
- Hypergraph partition [Boman, Grigori, et al.`08]
- Similar to ND on $\mathbf{A}^{\mathrm{T}} \mathrm{A}$, but no need to compute $\mathbf{A}^{\mathrm{T}} \mathrm{A}$

Ordering Interface in SuperLU

- Library contains the following routines:
- Ordering algorithms: MMD [J. Liu], COLAMD [T. Davis], (Par)METIS [G. Karypis etc.]
- Utility routines: form $A^{T}+\mathbf{A}, A^{T} A$
- Users may input any other permutation vector (e.g., using Metis, Chaco, etc.)

```
set_default_options_dist ( &options );
options.ColPerm = MY_PERMC; // modify default option
ScalePermstructInit (m, n, &ScalePermstruct );
METIS ( . . . , &ScalePermstruct.perm_c );
    pdgssvx ( &options, . . , &ScalePermstruct, . . .);
```


Symbolic Factorization

- Cholesky [George/Liu`81 book]
- Use elimination graph of L and its transitive reduction (elimination tree)
- Complexity linear in output: $\mathbf{O}(\mathrm{nnz}(\mathrm{L}))$
- LU
- Use elimination graphs of $L \& U$ and their transitive reductions (elimination DAGs) [Tarjan/Rose `78, Gilbert/Liu `93, Gilbert `94]
- Improved by symmetric structure pruning [Eisenstat/Liu `92]
- Improved by supernodes
- Complexity greater than nnz(L+U), but much smaller than flops(LU)

Performance of larger matrices

Name	Application	Data type	N	\mid A $/$ / N Sparsity	ILIU\| $(10 \wedge 6)$	Fill-ratio
matrix211	Fusion, MHD eqns (M3D-C1)	Real	801,378	161	1276.0	9.9
cc_linear2	Fusion, MHD eqns (NIMROD)	Complex	259,203	109	199.7	7.1
matick	Circuit sim. MNA method (IBM)	Complex	16,019	4005	64.3	1.0
cage13	DNA electrophoresis	Real	445,315	17	4550.9	608.5

* Sparsity ordering: MeTis applied to structure of A' +A

Strong scaling (fixed size): Cray XE6 (hopper@nersc)

- 2×12-core AMD 'MagnyCours' per node, 2.1 GHz processor

* Up to 1.4 Tflops factorization rate

Multicore / GPU-acceleration

- New hybrid programming code: MPI+OpenMP+CUDA, able to use all the CPUs and GPUs on manycore computers.
- SuperLU_DIST_4.0 release, Aug. 2014.
- Algorithmic changes:
- Aggregate small BLAS operations into larger ones.
- CPU multithreading Scatter/Gather operations.
- Hide long-latency operations.
- Results: using 100 nodes GPU clusters, up to $2.7 x$ faster, $2 x-5 x$ memory saving.

CPU + GPU algorithm

GPU acceleration: Software pipelining to overlap GPU execution with CPU Scatter, data transfer.

How to use multicore, GPU

- Instructions in top-level README.
- To use OpenMP parallelism:
setenv OMP_NUM_THREADS <\#\#>
- To enable Nvidia GPU access, need to take the following 2 step:

1) set the following Linux environment variable:
setenv ACC GPU
2) Add the CUDA library location in make.inc: (see sample make.inc)
```
    ifeq "${ACC}" "GPU"
        CUDA_FLAGS = -DGPU_ACC
        INCS += -I<CUDA directory>/include
        LIBS += -L<CUDA directory>/lib64 -Icublas -Icudart
    endif
```

- Available in serial SuperLU 4.0, June 2009
- Similar to ILUTP [Saad]: "T" = threshold, "P" = pivoting
- among the most sophisticated, more robust than structurebased dropping (e.g., level-of-fill)
- ILU driver: SRC/dgsisx.c

ILU factorization routine: SRC/dgsitrf.c
GMRES driver: EXAMPLE/ditersol.c

- Parameters:
- ilu_set_default_options (\&options)
- options.ILU_DropTol - numerical threshold (τ)
- options.ILU_FillFactor - bound on the fill-ratio (Y)

Result of Supernodal ILU (S-ILU)

- New dropping rules S-ILU($\tau, \gamma)$
- supernode-based thresholding (τ)
- adaptive strategy to meet user-desired fill-ratio upper bound (Y)

- Performance of S-ILU
- For 232 test matrices, S-ILU + GMRES converges with 138 cases ($\sim 60 \%$ success rate)
- S-ILU + GMRES is $1.6 x$ faster than scalar ILU + GMRES

Tips for Debugging Performance

- Check sparsity ordering
- Diagonal pivoting is preferable
- E.g., matrix is diagonally dominant, . . .
- Need good BLAS library (vendor, ATLAS, GOTO, . . .)
- May need adjust block size for each architecture
(Parameters modifiable in routine sp_ienv())
- Larger blocks better for uniprocessor
- Smaller blocks better for parallellism and load balance
- Open problem: automatic tuning for block size?
- Sparse LU, ILU are important kernels for science and engineering applications, used in practice on a regular basis
- Performance more sensitive to latency than dense case
- Continuing developments funded by DOE SciDAC projects
- Integrate into more applications
- Hybrid model of parallelism for multicore/vector nodes, differentiate intra-node and inter-node parallelism
- Hybrid programming models, hybrid algorithms
- Parallel HSS precondtioners
- Parallel hybrid direct-iterative solver based on domain decomposition

Exercises of SuperLU_DIST

- Instruction
https://redmine.scorec.rpi.edu/anonsvn/fastmath/docs/
ATPESC_2015/Exercises/Exercises/superlu/README.html
- On vesta:
/projects/FASTMath/ATPESC-2015/examples/superlu /projects/FASTMath/ATPESC-2015/install/superlu

Examples in EXAMPLE/

- pddrive.c: Solve one linear system
- pddrive1.c: Solve the systems with same A but different righthand side at different times
- Reuse the factored form of A
- pddrive2.c: Solve the systems with the same pattern as A
- Reuse the sparsity ordering
- pddrive3.c: Solve the systems with the same sparsity pattern and similar values
- Reuse the sparsity ordering and symbolic factorization
- pddrive4.c: Divide the processes into two subgroups (two grids) such that each subgroup solves a linear system independently from the other.

SuperLU_DIST Example Program

- EXAMPLE/pddrive.c
- Five basic steps

1. Initialize the MPI environment and SuperLU process grid
2. Set up the input matrices A and B
3. Set the options argument (can modify the default)
4. Call SuperLU routine PDGSSVX
5. Release the process grid, deallocate memory, and terminate the MPI environment

Fortran 90 Interface in FORTRAN/

- All SuperLU objects (e.g., LU structure) are opaque for F90
- They are allocated, deallocated and operated in the C side and not directly accessible from Fortran side.
- C objects are accessed via handles that exist in Fortran's user space
- In Fortran, all handles are of type INTEGER
- Example: FORTRAN/f_5x5.f90

$$
A=\left[\begin{array}{lllll}
s & & u & u & \\
l & u & & & \\
& l & p & & \\
& & & e & u \\
l & l & & & r
\end{array}\right], s=19.0, u=21.0, p=16.0, e=5.0, r=18.0, l=12.0
$$

STRUMPACK - STRUctured Matrices PACKage

STRUMPACK

- http://portal.nersc.gov/project/sparse/strumpack/
- C++, OpenMP, MPI
- Support both real \& complex datatypes, single \& double precision (via template), and 64-bit indexing.
- Input interfaces
- Dense matrix in standard format.
- Matrix-free - user provides matvec multiplication routine, and routine for selecting some matrix entries.
- Sparse matrix in CSR format.
- Two components:
- Dense - applicable to Toeplitz, Cauchy, BEM, integral equations, etc.
- Sparse - aim at matrices discretized from PDEs.
- Functions:
- HSS construction, HSS-vector product, ULV factorization, Solution.

Hierarchical matrix approximation

- Algebraic generalization to FMM, independent of Green's function.
- Matrix multiplication, factorization, inversion, etc.
- Applications:
- Integral equations, BEM, statistics, acoustic and electromagnetic scattering theory, rational interpolation, ...
- General discretized PDEs
- Exploit low-rank submatrices.
- If A has numerical low rank k (called epsilon-rank):

$$
\begin{aligned}
& A=U \Sigma V^{T} \approx A_{k}:=U \Sigma_{k} V^{T}, \Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}, \sigma_{k+1}, \ldots, \sigma_{n}\right) \\
& \Sigma_{k}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}, 0, \ldots, 0\right), \quad \text { with } \sigma_{k}>\varepsilon
\end{aligned}
$$

- Algorithms
- Truncated SVD
- Rank-revealing QR (RRQR)
- Randomized sampling (+ Interpolative Decomposition (ID) via RRQR)

HSS factorization

- Dense (but data-sparse): hierarchically semi-separable structure
- Off-diagonal blocks are rank deficient: BEMs, Integral equations, PDEs with smooth kernels
- Recursion leads to hierarchical partitioning
- Key to low complexity: nested bases

$$
A=\left[\right]
$$

HSS-embedded sparse multifrontal factorization

- Frontal matrices are dense, can be approximated by HSS
- Only for top levels $\left(l_{s}\right)$ in the elimination tree, with largest frontal matrices.
- ULV factorization of HSS matrix
- Low-rank Schur complement update

STRUMPACK-dense: parallel weak scaling

- Root node of the multifrontal factorization of a discretized Helmholtz problem (frequency domain, PML boundary, 10 Hz).
- For many PDEs on mesh KxKxK, max. off-diagonal rank $O(K)$.

K (mesh: $\left.\mathbf{K}^{3}\right)$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$	400	500
Matrix size K ${ }^{2}$	10,000	40,000	90,000	160,000	250,000
MPI tasks	64	256	1,024	4,096	8,192
Max. rank	313	638	903	1289	1625
Speedup over ScaLAPACK LU	1.8	4.0	5.4	4.8	3.9

STRUMPACK-Sparse: Compare to Intel MKL PARDISO

- 9 matrices: DOE SciDAC Accelerator, Fusion simulations; Oil reservoir, UF collection
- HSS-enabled sparse solver:
- Factorization cost decreases.
- Solve cost (and GMRES iterations) increases.

