SuperLU and STRUMPACK Sparse Direct Solver and Preconditioner

X. Sherry Li xsli@lbl.gov http://crd.lbl.gov/~xiaoye/SuperLU http://portal.nersc.gov/project/sparse/strumpack/

Argonne Training Program on Extreme-Scale Computing (ATPESC) August 7, 2015

Acknowledgements

- Supports from DOE, NSF, DARPA
 - FASTMath (Frameworks, Algorithms and Scalable Technologies for Mathematics)
 - TOPS (Towards Optimal Petascale Simulations)
 - CACHE (Communication Avoiding and Communication Hiding at Extreme Scales)
 - CEMM (Center for Extended MHD Modeling)
- Developers
 - SuperLU:
 - Sherry Li, LBNL
 - James Demmel, UC Berkeley
 - John Gilbert, UC Santa Barbara
 - Laura Grigori, INRIA, France
 - Meiyue Shao, Umeå University, Sweden
 - Piyush Sao, Gerogia Tech
 - Ichitaro Yamazaki, LBNL
 - STRUMPACK:
 - Pieter Ghysels, Francois-Henry Rouet, Sherry Li, LBNL

- Download site <u>http://crd.lbl.gov/~xiaoye/SuperLU</u>
 - Users' Guide, HTML code documentation
- Gunzip, untar
- Follow README at top level directory
 - Edit make.inc for your platform (compilers, optimizations, libraries, ...) (may move to autoconf in the future)
 - Link with a fast BLAS library
 - The one under CBLAS/ is functional, but not optimized
 - Vendor, GotoBLAS, ATLAS, ...

In the process of creating CMake build system.

Outline of Tutorial

- Functionality
- Sparse matrix data structure, distribution, and user interface
- Background of the algorithms
 - Differences between sequential and parallel solvers
- Examples, Fortran 90 interface
- Hands on exercises

Solve sparse Ax=b : lots of zeros in matrix

- fluid dynamics, structural mechanics, chemical process simulation, circuit simulation, electromagnetic fields, magneto-hydrodynamics, seismic-imaging, economic modeling, optimization, data analysis, statistics, . . .
- Example: A of dimension 10⁶, 10~100 nonzeros per row
- Matlab: > spy(A)

Boeing/msc00726 (structural eng.)

- Solving a system of linear equations Ax = b
 - Sparse: many zeros in A; worth special treatment
- Iterative methods: (e.g., Krylov, multigrid, ...)
 - A is not changed (read-only)
 - Key kernel: sparse matrix-vector multiply
 - Easier to optimize and parallelize
 - Low algorithmic complexity, but may not converge
- Direct methods
 - A is modified (factorized)
 - Harder to optimize and parallelize
 - Numerically robust, but higher algorithmic complexity
- Often use direct method to precondition iterative method
 - Solve an easy system: M⁻¹Ax = M⁻¹b

Available direct solvers

Survey of different types of factorization codes

http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf

- LL^{T} (s.p.d.)
- LDL^T (symmetric indefinite)
- LU (nonsymmetric)
- QR (least squares)
- Sequential, shared-memory (multicore), distributed-memory, out-ofcore, few are GPU-enabled ...

Distributed-memory codes:

- SuperLU_DIST [Li/Demmel/Grigori/Yamazaki]
 - accessible from PETSc, Trilinos, ...
- MUMPS, PasTiX, WSMP, ...

SuperLU Functionality

- LU decomposition, triangular solution
- Incomplete LU (ILU) preconditioner (serial SuperLU 4.0 up)
- Transposed system, multiple RHS
- Sparsity-preserving ordering
 - Minimum degree ordering applied to A^TA or A^T+A [MMD, Liu `85]
 - 'Nested-dissection' applied to A^TA or A^T+A [(Par)Metis, (PT)-Scotch]
- User-controllable pivoting
 - Pre-assigned row and/or column permutations
 - Partial pivoting with threshold
- Equilibration: $D_r A D_c$
- Condition number estimation
- Iterative refinement
- **Componentwise error bounds** [Skeel `79, Arioli/Demmel/Duff `89]

Software Status

	SuperLU	SuperLU_MT	SuperLU_DIST
Platform	Serial	SMP, multicore	Distributed memory
Language	C	C + Pthreads or OpenMP	C + MPI + OpenMP + CUDA
Data type	Real/complex, Single/double	Real/complex, Single/double	Real/complex, Double
Data structure	CCS / CRS	CCS / CRS	Distributed CRS

Fortran interfaces

SuperLU_MT similar to SuperLU both numerically and in usage

Data structure: Compressed Row Storage (CRS)

Many other data structures: "Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods", R. Barrett et al.

User interface - distribute input matrices

- Matrices involved:
 - A, B (turned into X) input, users manipulate them
 - L, U output, users do not need to see them
- A (sparse) and B (dense) are distributed by block rows

 Natural for users, and consistent with other popular packages: e.g. PETSc

Distributed input interface

Each process has a structure to store local part of A Distributed Compressed Row Storage

typedef struct {

- int_t nnz_loc; // number of nonzeros in the local submatrix
- int_t m_loc; // number of rows local to this processor
- int_t fst_row; // global index of the first row
- void *nzval; // pointer to array of nonzero values, packed by row
- int_t *colind; // pointer to array of column indices of the nonzeros
- int_t *rowptr; // pointer to array of beginning of rows in nzval[]and colind[]
 } NRformat_loc;

Distributed Compressed Row Storage

A is distributed on 2 processors:

- Processor P0 data structure:
 - nnz_loc = 5
 - m_loc = 2
 - fst_row = 0 // 0-based indexing
 - nzval = $\{s, u, u, |l, u\}$
 - colind = $\{0, 2, 4, |0, 1\}$
 - rowptr = { 0, 3, 5 }

- Processor P1 data structure:
 - nnz_loc = 7
 - m_loc = 3
 - fst_row = 2 // 0-based indexing
 - nzval = $\{ l, p, e, u, | l, l, r \}$
 - colind = $\{1, 2, |3, 4, |0, 1, 4\}$
 - rowptr = { 0, 2, 4, 7 }

Internal : distributed L & U factored matrices

- 2D block cyclic layout specified by user
- Process grid should be as square as possible. Or, set the row dimension (nprow) slightly smaller than the column dimension (npcol).
 - For example: 2x3, 2x4, 4x4, 4x8, etc.

Matrix

Process mesh

Process grid and MPI communicator

- Example: Solving a preconditioned linear system
 M⁻¹A x = M⁻¹ b
 - $\mathbf{M} = \mathbf{diag}(\mathbf{A}_{11}, \mathbf{A}_{22}, \mathbf{A}_{33})$
 - → use SuperLU_DIST for each diagonal block

- Create 3 process grids, same logical ranks (0:3), but different physical ranks
- Each grid has its own MPI communicator

- superlu_gridinit(MPI_Comm Bcomm, int nprow, int npcol, gridinfo_t *grid);
 - Maps the first {nprow, npcol} processes in the MPI communicator Bcomm to SuperLU 2D grid
- superlu_gridmap(MPI_Comm Bcomm, int nprow, int npcol, int usermap[], int ldumap, gridinfo_t *grid);
 - Maps an *arbitrary* set of {nprow, npcol } processes in the MPI communicator Bcomm to SuperLU 2D grid. The ranks of the selected MPI processes are given in usermap[] array.

For example:

Sparse factorization

- Store A explicitly ... many sparse compressed formats
- "Fill-in" . . . new nonzeros in L & U
 - Typical fill-ratio: 10x for 2D problems, 30-50x for 3D problems
- Graph algorithms: directed/undirected graphs, bipartite graphs, paths, elimination trees, depth-first search, heuristics for NP-hard problems, cliques, graph partitioning, ...
- Unfriendly to high performance, parallel computing
 - Irregular memory access, indirect addressing, strong task/data dependency

Algorithmic phases in sparse GE

- 1. Minimize number of fill-ins, maximize parallelism (~10% time)
 - Sparsity structure of L & U depends on that of A, which can be changed by row/column permutations (vertex re-labeling of the underlying graph)
 - Ordering (combinatorial algorithms; "NP-complete" to find optimum [Yannakis '83]; use heuristics)
- 2. Predict the fill-in positions in L & U (~10% time)
 - Symbolic factorization (combinatorial algorithms)
- 3. Design efficient data structure for storage and quick retrieval of the nonzeros
 - Compressed storage schemes
- 4. Perform factorization and triangular solutions (~80% time)
 - Numerical algorithms (F.P. operations only on nonzeros)
 - Usually dominate the total runtime
- For sparse Cholesky and QR, the steps can be separate;
 For sparse LU with pivoting, steps 2 and 4 my be interleaved.

General Sparse Solver

- Use (blocked) CRS or CCS, and any ordering method
 - Leave room for fill-ins ! (symbolic factorization)
- Exploit "supernode" (dense) structures in the factors
 - Can use Level 3 BLAS
 - Reduce inefficient indirect addressing (scatter/gather)
 - Reduce graph traversal time using a coarser graph

Numerical Pivoting

- Goal of pivoting is to control element growth in L & U for stability
 - For sparse factorizations, often relax the pivoting rule to trade with better sparsity and parallelism (e.g., threshold pivoting, static pivoting, . . .)
- Partial pivoting used in sequential SuperLU and SuperLU_MT (GEPP)
 - Can force diagonal pivoting (controlled by diagonal threshold)
 - Hard to implement scalably for sparse factorization
- Static pivoting used in SuperLU_DIST (GESP)
 - Before factor, scale and permute A to maximize diagonal: P_r D_r A D_c = A'
 - During factor A' = LU, replace tiny pivots by $\sqrt{\varepsilon} \|A\|$, without changing data structures for L & U
 - If needed, use a few steps of iterative refinement after the first solution
 - → quite stable in practice

Local greedy: minimize upper bound on fill-in

- Model problem: discretized system Ax = b from certain PDEs, e.g., 5-point stencil on n x n grid, N = n²
 - Factorization flops: $O(n^3) = O(N^{3/2})$
- Theorem: ND ordering gives optimal complexity in exact arithmetic [George '73, Hoffman/Martin/Rose]

ND Ordering

- Generalized nested dissection [Lipton/Rose/Tarjan '79]
 - Global graph partitioning: top-down, divide-and-conqure
 - Best for largest problems
 - Parallel codes available: ParMetis, PT-Scotch
 - First level

Recurse on A and B

Goal: find the smallest possible separator S at each level

- Multilevel schemes:
 - Chaco [Hendrickson/Leland `94], Metis [Karypis/Kumar `95]
- Spectral bisection [Simon et al. `90-`95]
- Geometric and spectral bisection [Chan/Gilbert/Teng `94]

ND Ordering

SuperLU tutorial

Ordering for LU (unsymmetric)

- Can use a symmetric ordering on a symmetrized matrix
 - Case of partial pivoting (serial SuperLU, SuperLU_MT): Use ordering based on A^T*A
 - Case of static pivoting (SuperLU_DIST): Use ordering based on A^T+A
- Can find better ordering based solely on A, without symmetrization
 - Diagonal Markowitz [Amestoy/Li/Ng`06]
 - Similar to minimum degree, but without symmetrization
 - Hypergraph partition [Boman, Grigori, et al. `08]
 - Similar to ND on A^TA, but no need to compute A^TA

Ordering Interface in SuperLU

- Library contains the following routines:
 - Ordering algorithms: MMD [J. Liu], COLAMD [T. Davis], (Par)METIS [G. Karypis etc.]
 - Utility routines: form A^T+A , A^TA
- Users may input any other permutation vector (e.g., using Metis, Chaco, etc.)

```
...
set_default_options_dist ( &options );
options.ColPerm = MY_PERMC; // modify default option
ScalePermstructInit ( m, n, &ScalePermstruct );
METIS ( ..., &ScalePermstruct.perm_c );
...
pdgssvx ( &options, ..., &ScalePermstruct, ...);
...
```

Symbolic Factorization

- Cholesky [George/Liu `81 book]
 - Use elimination graph of L and its transitive reduction (elimination tree)
 - Complexity linear in output: O(nnz(L))

LU

- Use elimination graphs of L & U and their transitive reductions (elimination DAGs) [Tarjan/Rose `78, Gilbert/Liu `93, Gilbert `94]
- Improved by symmetric structure pruning [Eisenstat/Liu `92]
- Improved by supernodes
- Complexity greater than nnz(L+U), but much smaller than flops(LU)

Name	Application	Data type	N	A / N Sparsity	L\U (10^6)	Fill-ratio
matrix211	Fusion, MHD eqns (M3D-C1)	Real	801,378	161	1276.0	9.9
cc_linear2	Fusion, MHD eqns (NIMROD)	Complex	259,203	109	199.7	7.1
matick	Circuit sim. MNA method (IBM)	Complex	16,019	4005	64.3	1.0
cage13	DNA electrophoresis	Real	445,315	17	4550.9	608.5

Sparsity ordering: MeTis applied to structure of A' +A

Strong scaling (fixed size): Cray XE6 (hopper@nersc)

2 x 12-core AMD 'MagnyCours' per node, 2.1 GHz processor

***** Up to 1.4 Tflops factorization rate

Multicore / GPU-acceleration

- New hybrid programming code: MPI+OpenMP+CUDA, able to use all the CPUs and GPUs on manycore computers.
 - SuperLU_DIST_4.0 release, Aug. 2014.
- Algorithmic changes:
 - Aggregate small BLAS operations into larger ones.
 - CPU multithreading Scatter/Gather operations.
 - Hide long-latency operations.
- Results: using 100 nodes GPU clusters, up to 2.7x faster, 2x-5x memory saving.

CPU + GPU algorithm

How to use multicore, GPU

- Instructions in top-level README.
- To use OpenMP parallelism: setenv OMP_NUM_THREADS <##>
- To enable Nvidia GPU access, need to take the following 2 step:
 - 1) set the following Linux environment variable: setenv ACC GPU

```
2) Add the CUDA library location in make.inc: (see sample make.inc)
ifeq "${ACC}" "GPU"
CUDA_FLAGS = -DGPU_ACC
INCS += -I<CUDA directory>/include
LIBS += -L<CUDA directory>/lib64 -lcublas -lcudart
endif
```

ILU Interface

- Available in serial SuperLU 4.0, June 2009
- Similar to ILUTP [Saad]: "T" = threshold, "P" = pivoting
 - among the most sophisticated, more robust than structurebased dropping (e.g., level-of-fill)
- ILU driver: SRC/dgsisx.c

ILU factorization routine: SRC/dgsitrf.c

GMRES driver: EXAMPLE/ditersol.c

- Parameters:
 - ilu_set_default_options (& options)
 - options.ILU_DropTol numerical threshold (**7**)
 - options.ILU_FillFactor bound on the fill-ratio (γ)

Result of Supernodal ILU (S-ILU)

- New dropping rules S-ILU(τ , γ)
 - supernode-based thresholding (T)
 - adaptive strategy to meet user-desired fill-ratio upper bound (γ)

Performance of S-ILU

- For 232 test matrices, S-ILU + GMRES converges with 138 cases (~60% success rate)
- S-ILU + GMRES is 1.6x faster than scalar ILU + GMRES

Tips for Debugging Performance

- Check sparsity ordering
- Diagonal pivoting is preferable
 - E.g., matrix is diagonally dominant, ...
- Need good BLAS library (vendor, ATLAS, GOTO, . . .)
 - May need adjust block size for each architecture
 - (Parameters modifiable in routine sp_ienv())
 - Larger blocks better for uniprocessor
 - Smaller blocks better for parallellism and load balance
 - Open problem: automatic tuning for block size?

Summary

- Sparse LU, ILU are important kernels for science and engineering applications, used in practice on a regular basis
- Performance more sensitive to latency than dense case
- Continuing developments funded by DOE SciDAC projects
 - Integrate into more applications
 - Hybrid model of parallelism for multicore/vector nodes, differentiate intra-node and inter-node parallelism
 - Hybrid programming models, hybrid algorithms
 - Parallel HSS preconditioners
 - Parallel hybrid direct-iterative solver based on domain decomposition

Exercises of SuperLU_DIST

Instruction

https://redmine.scorec.rpi.edu/anonsvn/fastmath/docs/ ATPESC_2015/Exercises/Exercises/superlu/README.html

• On vesta:

/projects/FASTMath/ATPESC-2015/examples/superlu /projects/FASTMath/ATPESC-2015/install/superlu

Examples in EXAMPLE/

- pddrive.c: Solve one linear system
- pddrive1.c: Solve the systems with same A but different righthand side at different times
 - Reuse the factored form of A
- pddrive2.c: Solve the systems with the same pattern as A
 - Reuse the sparsity ordering
- pddrive3.c: Solve the systems with the same sparsity pattern and similar values
 - Reuse the sparsity ordering and symbolic factorization
- pddrive4.c: Divide the processes into two subgroups (two grids) such that each subgroup solves a linear system independently from the other.

SuperLU_DIST Example Program

- EXAMPLE/pddrive.c
- Five basic steps
 - 1. Initialize the MPI environment and SuperLU process grid
 - 2. Set up the input matrices A and B
 - **3.** Set the options argument (can modify the default)
 - 4. Call SuperLU routine PDGSSVX
 - 5. Release the process grid, deallocate memory, and terminate the MPI environment

- All SuperLU objects (e.g., LU structure) are opaque for F90
 - They are allocated, deallocated and operated in the C side and not directly accessible from Fortran side.
- C objects are accessed via handles that exist in Fortran's user space
- In Fortran, all handles are of type INTEGER
- Example: FORTRAN/f_5x5.f90

$$A = \begin{bmatrix} s & u & u \\ l & u & & \\ & l & p & \\ & & e & u \\ l & l & & r \end{bmatrix}, \ s = 19.0, \ u = 21.0, \ p = 16.0, \ e = 5.0, \ r = 18.0, \ l = 12.0$$

STRUMPACK - STRUctured Matrices PACKage

STRUMPACK

- http://portal.nersc.gov/project/sparse/strumpack/
- C++, OpenMP, MPI
- Support both real & complex datatypes, single & double precision (via template), and 64-bit indexing.
- Input interfaces
 - Dense matrix in standard format.
 - Matrix-free user provides matvec multiplication routine, and routine for selecting some matrix entries.
 - Sparse matrix in CSR format.
- Two components:
 - Dense applicable to Toeplitz, Cauchy, BEM, integral equations, etc.
 - Sparse aim at matrices discretized from PDEs.
- Functions:
 - HSS construction, HSS-vector product, ULV factorization, Solution.

Hierarchical matrix approximation

- Algebraic generalization to FMM, independent of Green's function.
 - Matrix multiplication, factorization, inversion, etc.
- Applications:
 - Integral equations, BEM, statistics, acoustic and electromagnetic scattering theory, rational interpolation, ...
 - General discretized PDEs
- Exploit low-rank submatrices.
 - If A has numerical low rank k (called epsilon-rank):

$$A = U\Sigma V^{T} \approx A_{k} := U\Sigma_{k}V^{T}, \Sigma = diag(\sigma_{1},...,\sigma_{k},\sigma_{k+1},...,\sigma_{n})$$
$$\Sigma_{k} = diag(\sigma_{1},...,\sigma_{k},0,...,0), \text{ with } \sigma_{k} > \varepsilon$$

- Algorithms
 - Truncated SVD
 - Rank-revealing QR (RRQR)
 - Randomized sampling (+ Interpolative Decomposition (ID) via RRQR)

HSS factorization

- Dense (but data-sparse): hierarchically semi-separable structure
 - Off-diagonal blocks are rank deficient: BEMs, Integral equations, PDEs with smooth kernels

13

11

- Recursion leads to hierarchical partitioning
- Key to low complexity: nested bases

$$A = \begin{bmatrix} \frac{D_1}{U_2 B_2 V_1^T} & \frac{U_1 B_1 V_2^T}{D_2} & U_3 B_3 V_6^T \\ \hline U_6 B_6 V_3^T & \frac{D_4}{U_5 B_5 V_4^T} & \frac{U_4 B_4 V_5^T}{D_5} \end{bmatrix}$$

HSS tree

HSS-embedded sparse multifrontal factorization

- Frontal matrices are dense, can be approximated by HSS
- Only for top levels (I_s) in the elimination tree, with largest frontal matrices.
 - ULV factorization of HSS matrix
 - Low-rank Schur complement update

STRUMPACK-dense: parallel weak scaling

- Root node of the multifrontal factorization of a discretized Helmholtz problem (frequency domain, PML boundary, 10Hz).
- For many PDEs on mesh KxKxK, max. off-diagonal rank O(K).

K (mesh: K ³⁾	100	200	300	400	500
Matrix size K ²	10,000	40,000	90,000	160,000	250,000
MPI tasks	64	256	1,024	4,096	8,192
Max. rank	313	638	903	1289	1625
Speedup over ScaLAPACK LU	1.8	4.0	5.4	4.8	3.9

STRUMPACK-Sparse: Compare to Intel MKL PARDISO

- 9 matrices: DOE SciDAC Accelerator, Fusion simulations; Oil reservoir, UF collection
- HSS-enabled sparse solver:
 - Factorization cost decreases.
 - Solve cost (and GMRES iterations) increases.