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When Do We Need New Architectures 

• Long-lasting architectural advances occur when a “wall” must be 
overcome 

• 1st Wall – Mid 90s: the Memory Wall 

• 2nd Wall – 2004: the Power Wall 

• 3rd Wall – Now: the Locality Wall 

And this is largely due to emergence of apps with 
Data Intensive Characteristics 
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What Do I Mean by Data Intensive? 

• Computation dominated by data access & movement – not flops 

• Large sets of data often persistent  

– but little reuse during computation 

• No predictable regularity 

• Significantly different scaling 

• Streaming becoming important 

The “Locality” we have come to expect  
from our apps is disappearing 
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This Talk 

• Moore’s Law and the Prior Walls 

• Today’s Architectures 

• Evidence of a New “Locality” Wall 

– Benchmarks 

– A Big Data Application 

• Migrational Computing: a Possible Architectural Fix 
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Technology, Moore’s Law, and Beyond 

• Moore’s Law: 2D transistors get smaller & faster 

– From 10um to 5nm feature size: 2,000X smaller & faster 

• Cores get smaller, faster, lower power 

– Power density approx. constant as long as Vdd declines 

• Memory arrays get denser 

– To maximize density, access time drops at best slowly 

– Can increase bandwidth, but power skyrockets 

• After Moore’s Law: we’re going 3D! 

– With a mix of die types 

http://www.micron.com/products/hybrid-memory-cube 
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The Memory Wall (mid 1990s) 

http://www.extremetech.com/wp-content/uploads/2014/07/140364245678419.jpg 

• Core clock speeds outran memory latency 

• Breaking the Wall: Use extra transistors for  

– Bigger on-chip SRAM caches 

– More ILP to find more memory accesses 

– Add additional floating point capability 

• Enablers: Applications had plenty of locality 

• Example: Ax=b, A is large, dense, matrix 

– Tremendous temporal locality 

– Assume caches can save nxn patch of A 

– O(n2) to read nxn patch of A to cache 

– O(n3) operations on this patch 

• With big enough cache, don’t care how slow memory is 
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The Power Wall (2004) 

• Flattening Vdd increased power density 

– Bigger chips meant more logic to dissipate 

• Result: at 120Watts, cooling uneconomical 

• Breaking the wall: 

– Lower the clock rate 

– Use multiple simpler cores 

– Increase SIMD-style parallelism 

• Side-effect: need more bandwidth 

• Solution for dense apps: again bigger caches 
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2004: Emergence of Multi-core 
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http://www.guru3d.com/index.php?ct=news&action=file&id=19577 

https://cdn.arstechnica.net/wp-content/uploads/sites/3/2017/05/voltablockdiagram.png 

28 cores 

84 SM cores 
5376 CUDA cores 
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Today’s Hybrid Multi/Many Core/Socket Architecture 

• Nothing is uniform about memory 
references 

• Multiple memory domains 

• Multiple memory ports & types 

• Multiple different link protocols 

• Higher bandwidth parts needed (at 
energy costs) 

• Growing “width” of data returned 
from an access (spatial locality) 
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Energy Tightly Tied to Locality 

Greg Asfalk, HP 

• Increasing with Non-Locality 

• Largely unchanged by new 

technologies 

 

Perhaps 5 pJ in best of today 

Exascale goal of 20 pJ per flop 
unreachable if any memory 
references need to be made 
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Need for More Memory Bandwidth – Multi-level Memories 

https://cdn.arstechnica.net/wp-content/uploads/sites/3/2017/05/NVIDIA-Telsa-V100.jpg http://www.amd.com/PublishingImages/graphics/illustrations/570px/6315-hbm-stacks-diagram.png 

HBMs: 4-5X bandwidth, but wider transfer/access 
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Benchmark Name 

LINPACK 

HPCG: Hi Perf Cong. 

Grad.  

SpMV: Sparse Mat. Vec.  

BFS: Breadth First 

Search  

FireHose 

And Apps Are Changing – Lets look at some Benchmarks 

Function Performed 

Solve Ax=b; 

A is dense 

Ax=b; A sparse but regular 

Ab; A sparse & irregular 

Find all reachable vertices from 

root 

Find “events” in streams of 

data 
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Performance vs Time 
Peak Flops 
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Rapid increase driven by 

Moore’s Law: Cache size  

& # FPUs 

Flatness implies 

bound by  

something else 
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Performance/Byte of B/W vs Time 
Peak Flops 
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Perf./Byte of B/W vs Perf. 
Peak Flops 

Graph 500 HPCG 

Top 500 Rmax 
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Bigger systems have newer cores 

with bigger caches to do more  

flops for same memory reads 

HPCG is Memory 

Bandwidth Bound 

Decline vs size due to 

loss of injection bandwidth 

in bigger systems 
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Performance per Watt vs Time 
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Rapid Increase because 

ratio dependent on logic 

technology alone; more flops/s 

per socket 

Flat probably because near 

perfect weak scaling 

and no real memory 

improvement  
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Regular neighbor traffic places 

little demands on networking as 

system scales 

Traffic again regular; 

Near perfect weak scaling 

Random irregular traffic reduces 

node injection B/W as system scales 
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Green-GRAPH500 
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Sparsity & Conventional Scalability 

0.001

0.01

0.1

1

10

100

1000

1 10 100 1,000 10,000 100,000

Pe
rfo

rm
an

ce
 N

or
m

al
ze

d 
to

 P
ea

k 
Si

ng
le

 D
om

ai
n 

Domains
HPCG:Unconv HPCG:Conv SpMV:Sparse7 SpMV:Sparse49 SpMV:Sparse73 BFS

Across all benchmarks,  it takes 10-1000 

nodes of distributed memory systems to 

equal best of single domain systems for the 

sparsest problems 

Bylina et al., “Performance Analysis of Multicore and Multinodal Implementation of SpMV Operation”, 2014. www.graph500.org. http://www.hpcg-benchmark.org/ 

Observation: Extreme Sensitivity to 

• Level of Sparsity 

• # of physically separate memory domains 



ATPESC 2017, July 30 – August 11, 2017 20 

Firehose Streaming Benchmark 

• http://firehose.sandia.gov/ 

• Datum: Comma separated ASCII string  
– Key: ASCII string representing 64b uint (IP adr) 

– Value: depends on benchmark variant 

– Truth flag: was the stream from this key biased 

• Event: detection of 24 datums with same “key” 

• Anomaly: value distribution biased towards 0s 
– 3 variants defined 

• Performance metric: Datums/sec 

Extract 
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Single Node Performance 

Terrible Scaling 
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Large Scale Anomaly 1 Processing 

• SNL SkyBridge, Cray-CS300 1848 2-socket nodes at 

16 cores/node 

• From “Stateful Streaming in Dist. Memory 

Supercomputers,” Berry & Porter, CLSAC 2016 

• MPI with PHISH runtime library 

• Approx  2.75 M datums/s per node 

• Or about 220 M/s per rack 

Scaling line is fairly linear 

BUT at 2.75M datums/s per 32 core node,  

0.09M datums/s per core is 1/60 that of a single core  
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Benchmark Name 

LINPACK 

HPCG: Hi Perf Cong. 

Grad.  

SpMV: Sparse Mat. Vec.  

BFS: Breadth First 

Search  

FireHose 

Summary: Basic Benchmarks  
– Non-traditional Have Locality Issues 

Function Performed 

Solve Ax=b; 

A is dense 

Ax=b; A sparse but regular 

Ab; A sparse & irregular 

Find all reachable vertices from 

root 

Find “events” in streams of 

data 

Performance 

Limiters 

Cache size & # FPUs 

Memory B/W 

Memory B/W; some 

Network 

Network B/W; Remote 

atomics 

Managing the streaming 
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Real World Challenge Data Intensive Problem 
(From Lexis Nexis) 

• 2012: 40+ TB of Raw Data 

• Periodically clean up & combine to 
4-7 TB 

• Weekly “Boil the Ocean” to 
precompute answers to all 
standard queries 

– Does X have financial difficulties? 

– Does X have legal problems? 

– Has X had significant driving 
problems? 

– Who has shared addresses with X? 

– Who has shared property ownership 
with X? 

Auto Insurance Co: “Tell me about giving auto policy to Jane Doe” in < 0.1sec 

“Jane Doe has no indicators 
But 
she has shared multiple addresses 
with Joe Scofflaw 
Who has the following negative 
indicators ….” 

Look up answers to precomputed 
queries for “Jane Doe”, and combine 

Relationships 
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Traditional Approach: Runaway Intermediate Data 

14.2B recs

325 B/rec

4.6TB
Project

14.2B recs

100+ B/rec

1.5TB

Join on

Address

1.6T recs

200+ B/rec

300+TB

Sort & 

Remove

Duplicates

1.5T recs

30B/rec

45TB

• Compute adr hash

• Compare lnames

• Init score to 3

• Project

1.6T recs

30 B/rec

48+TB

Group by

ID pairs &

Sum scores,

Lname_match

{(ID1, ID2, 

adrhash, score,

lname_match)}

{(ID, lname, adr)}

Hash ID1,2

& Distribute

12B recs

16B/rec

200GB

Select on

Score &

Lname_match

1.2T recs

16B/rec

20TB

{(ID1, ID2, score, lname_match)}

800M distinct IDs

400M distinct IDs

Send between 

nodes via TCP/IP 

datagrams

“h”
“t”

“J”

“D”
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2012: 400 2-socket nodes (10 racks) 

2013 study looked at “future” alternatives: 

• Upgrades to conventional 

• “Lightweight” systems 

– Lower power, lower performance cores 

– Study assumed Calxeda 4-core ARMs 

– but systems like HP Moonshot similar 

• Sandia’s X-Caliber project 

– Heavyweight with HMC-like memories 

– Resembles Intel’s Knights Landing 

• All processing on bottom of 3D stack 

– System = “sea” of stacks 

Projecting Performance for LexisNexis’ Implementation 

(b) X-caliber Node Mockup
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Heavyweight Alternatives Using LN’s App Flow 
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Upgrade all but Processor
355s, 10 racks
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Upgrade all inc. Processor
126s, 10 racks

Performance Options: 

• Socket: 6C to 24C 

• Memory B/W by 3X 

• Disk to SSD or RAMDisk 

• Network to Infiniband 

 

No one option grows  

performance more than 45% 
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Unconventional Alternatives 
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2-level memory
1068s, 3 racks
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3D Stack Only
5s, 1 rack
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Migrational Computing: An Alternative Architecture 

• Thread Migration: move site of a thread’s execution 

• Rationale: make memory reference LOCAL! 

• Today: either invisible (e.g. during I/O call) or explicit (as in Chapel) 

• New idea: make migration automatic on remote memory access 

https://i.ytimg.com/vi/i7qrs2Db2l0/maxresdefault.jpg 
https://images8.alphacoders.com/428/thumb-350-428007.jpg 
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A Migrational Architecture 

Memory 
Channel 

Memory 

Memory 
Front End 

Core(s) 

Memory 

Memory 
Front End 

Core(s) 

Memory 

Memory 
Front End 

Core(s) 

Memory 

Memory 
Front End 

Core(s) 

Memory 

Memory 
Front End 

Core(s) 

Memory 

Memory 
Front End 

Core(s) 

Network 

Nodelet: New unit of parallelism 

Threads execute here 

Until they make a non-local reference 
And then moved to correct nodelet 

. . . 

And they are free to spawn 
independent children 

All memory in single 
global address space 

Smart Memory  
Controllers 
that also do atomics 
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A Real Migrational System 

MFE

GCore

GCore

GCore

GCore

Memory

(a) Nodelet

N/W
I/F

I/O
I/F

SC

N
odelet

N
odelet

N
odelet

Migration Engine

… …

(b) Node
Up Links

Intra Supernode
Switch

…

No
de

No
de

…
(c) SuperNode

Migrating Threads 

are major traffic  

on Network 

Multi-Threaded 

Cores Stationary Core 

Runs OS, Launches 

Jobs 

Atomics run 

in Memory 

Front End (MFE) 
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Near Term Scaling 

Emu Chick 
• 8 Nodes, 64 Memory Channels 
• Copy room environment 

Emu1 Memory Server 
• 256 nodes, 2048 Memory Channels 
• Server room environment 

The node boards  
are the same! 
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Sparse Matrix-Dense Vector with Migrating Threads 

struct Aelt { 

  int col; 

  Aelt *next_rowelt}; 

Thread carries i, sum, 

nextj with it 

nextj = Ahdr[i]; 

sum=0; 

while (nextj != 0) { 

      sum += x[(*nextj).col]; 

      nextj = (*nextj).next_rowelt; 

}; 

q[i] = sum; 

 

q 

x 

r 

p 

A[i,*]  
header 

… … 

Nodelet 0 Nodelet 1 Nodelet P-1 Nodelet P 

Migration before access 

No migration before access 

One Aelt for each non-zero in some row of A 
• Non-zero value 
• Column index 
• Pointer to next non-zero 
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SpMV with Migrating Threads 
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Hybrid

Per row for migrating threads: 

• Stinger-like multiple CSR 

blocks 

• 32s+108 bytes 

• At most s+1 migrations 
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Firehose with Migration 
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Python C++ Phish/C++ Waterslide Emu 1

Extract

Datum

Parse

Datum

Compute

Hash

Probe

Table

Update

Counts

Prepare

Report

Clear

Entry

Initialize

Entry

=24Hit

Miss

Packet

Stream

1 Emu thread per datum

• 1 Emu Chick (64 nodelets) = 88X a CS300 node 

• 1 Emu Rack (2048 nodelets) = 35X a CS300 rack 

Single Blade Multi-Core 
Emu

Cray

CS300

Multi-Blade 

Emu Nodelet Bounds: 

• Memory access: 20.4 M/s 

• Network bound: 18M/s 

• Instr. Rate bound: 3.8M/s 
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Ultimate Scaling: Sea of Memory Stacks 

• Add Cores below each vault 

• Upgrade off-stack interfaces 
to full peer-peer protocol 

• Add in second stack of non-
volatile 

• Result: standalone stack with 
32 independent nodelets 

 

35 

http://www.micron.com/products/hybrid-memory-cube 

X 

Migrating Threads 

Migrating Threads are the Glue! 
X 
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Projection for Massive “Batch-Mode”LexisNexis Problem 

Emu1 
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Emu3 

Baseline 

Upgrades 

Emu1 assumes 400MHz GCs 

2400 MT/s DRAM Channels 

ARM servers 

KNL-Like 

Real-Time Streaming Version Even Better 
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Conclusions 

• Non-locality increasing rapidly in real apps 

• Current architectures becoming badly inefficient 

• The problem is in the memory & scaling  

• Growing need for “remote functions” 

• Migrating threads greatly simplify all 

• Natural projection to 3D systems 
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