

ARCHITECTURE OF THE ARGONNE CRAY XC40 KNL SYSTEM 'THETA'

SCOTT PARKER Lead, Performance Engineering Team Argonne Leadership Computing Facility

July 31, 2017

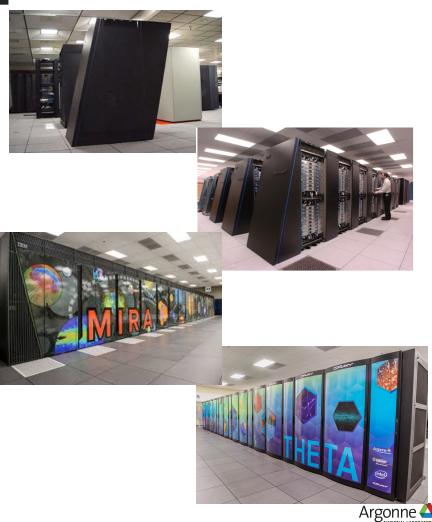
ALCF SYSTEMS

		Bite Creae O suprecomparts		THE TA
Mira – IBм вG/Q	Cetus – IBM BG/Q	Vesta – IBм вс/Q	Cooley - Cray/NVIDIA	Theta - Cray XC40
 49,152 nodes 	 4,096 nodes 	 2,048 nodes 	– 126 nodes (Haswell)	 3,624 nodes (KNL)
 786,432 cores 	 65,536 cores 	 32,768 cores 	- 1512 cores	- 231,936 cores
– 786 TB RAM	– 64 TB RAM	– 32 TB RAM	 — 126 Tesla K80 — 48 ТВ RAM (3 тв 	 736 TB RAM 10 PF
– 10 PF	— 836 TF	— 419 TF	GPU)	

Storage

HOME: 1.44 PB raw capacity SCRATCH:

- mira-fs0 26.88 PB raw, 19 PB usable; 240 GB/s sustained
- mira-fs1 10 PB raw, 7 PB usable; 90 GB/s sustained
- mira-fs2 (ESS) 14 PB raw, 7.6 PB usable; 400 GB/s sustained (not in production yet)
- theta-fs0 10 PB raw, 8.9 useable, 240 GB/s sustained

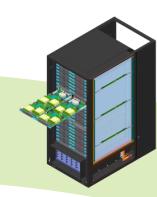

TAPE: 21.25 PB of raw archival storage [17 PB in use]

ARGONNE HPC TIMELINE

2004:

- Blue Gene/L introduced
- LLNL 90-600 TF system #1 on Top 500 for 3.5 years
- **2005**:
 - Argonne accepts 1 rack (1024 nodes) of Blue Gene/L (5.6 TF)
- **2006**:
 - Argonne Leadership Computing Facility (ALCF) created
 - ANL working with IBM on next generation Blue Gene
- **2008**:
 - ALCF accepts 40 racks (160k cores) of Blue Gene/P (557 TF)
- **2009**:
 - ALCF approved for 10 petaflop system to be delivered in 2012
 - ANL working with IBM on next generation Blue Gene
- 2012:
 - 48 racks of Mira Blue Gene/Q (10 PF) in production at ALCF
- **2014**:
 - ALCF CORAL contract awarded to Intel/Cray
 - Development partnership for Theta and Aurora begins
- **2016**:
 - ALCF accepts Theta (10 PF) Cray XC40 with Xeon Phi (KNL)
- 2019:
 - Aurora Cray/Intel Xeon Phi to be delivered

THETA


- System:
 - Cray XC40 system
 - 3,624 compute nodes/ 231,936 cores
 - ~10 PetaFlops peak performance
 - Accepted Fall 2016
- Processor:
 - Intel Xeon Phi, 2nd Generation (Knights Landing) 7230
 - 64 Cores
 - 1.3 GHz base / 1.1 GHz AVX / 1.4-1.5 GHz Turbo
- Memory:
 - 736 TB of total system memory
 - 16 GB MCDRAM per node
 - 192 GB DDR4-2400 per node
- Network:
 - Cray Aries interconnect
 - Dragonfly network topology
- Filesystems:
 - Project directories: 10 PB Lustre file system
 - Home directories: GPFS

THETA SYSTEM OVERVIEW

Cabinet: 3 Chassis 510.72 TF 3TB MCDRAM, 36TB DRAM

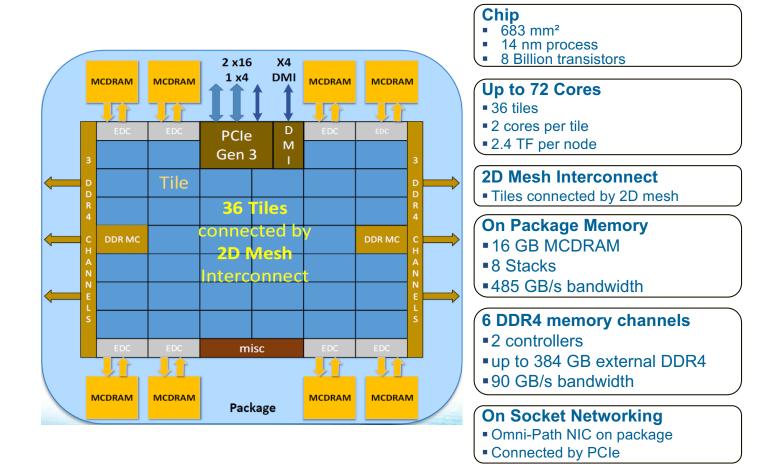
System: 20 Cabinets 3264 Nodes, 960 Switches 10 groups, Dragonfly 7.2 TB/s Bi-Sec 9.65 PF Peak 56.6 TB MCDRAM, 679.5 TB DRAM

Chassis: 16 Blades 64 Nodes, 16 Switches 170.24 TF 1TB MCDRAM, 12TB DRAM

Compute Blader

Compute Blade: 4 Nodes/Blade + Aries switch 10.64 TF 64GB MCDRAM, 768GB DRAM 128GB SSD

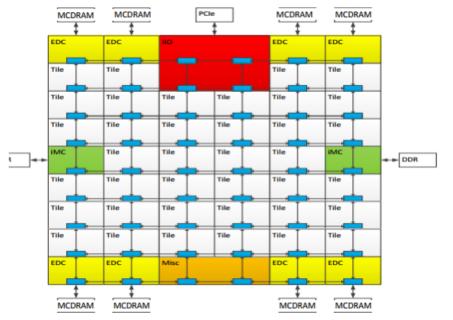
Sonexion Storage 4 Cabinets Lustre file system 10 PB usable 210 GB/s


Node: KNL Socket 2.66 TF 16GB MCDRAM, 192 GB DDR4 (6 channels)

Knights Landing Improvements

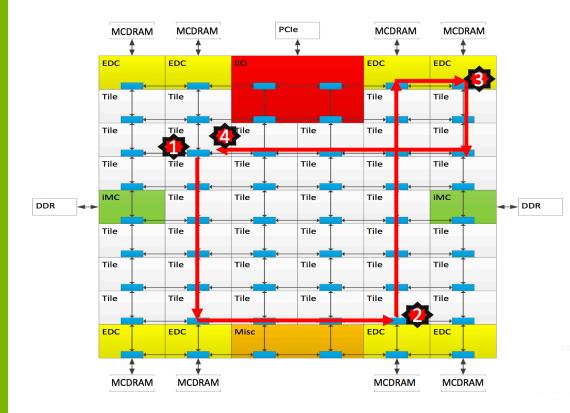
Improvement	Impact
Self Booting	No PCIe bottleneck
Binary Compatible with Xeon	Runs legacy code, no recompile
New Core Architecture (Atom based)	~3x higher performance than KNC
Improved Vector Density	3+ TFlops (DP) Peak per chip
New AVX-512 ISA	New 512 bit vector ISA with Masks
Gather/Scatter Engine	Hardware support for gather/scatter
MCDRAM + DDR memory	High bandwidth MCDRAM, large capacity DDR
New on-die interconnect: 2D mesh	High bandwidth connection between cores and memory
Integrated Omni-path Fabric	Better scalability at lower cost

KNIGHTS LANDING PROCESSOR



KNIGHTS LANDING VARIANTS

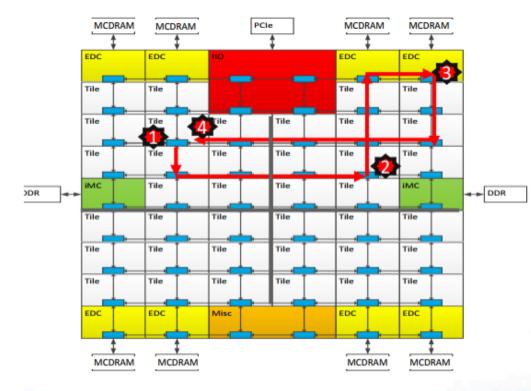
SKU	Cores	TDP Freq (GHz)	AVX Freq (GHz)	Peak Flops (TFlops)	MCDRAM (GB)	DDR Speed	TDP (Watts)
7210	64	1.3	1.1	2.66	16	2133	215
7230	64	1.3	1.1	2.66	16	2400	215
7250	68	1.4	1.2	3.05	16	2400	215
7290	72	1.5	1.3	3.46	16	2400	245


KNL Mesh Interconnect

- 2D mesh interconnect connects
 - Tiles (CHA)
 - MCDRAM controllers
 - DDR controllers
 - Off chip I/O (PCIe, DMI)
- YX routing:
 - Go in Y \rightarrow turn \rightarrow Go in X
 - Messages arbitrate on injection and on turn
- Cache coherent
 - Uses MESIF protocol
- Clustering mode allow traffic localization
 - All-to-all, Quadrant, Sub-NUMA

Cluster Modes: All-to-All

Address uniformly hashed across all distributed directories


No affinity between Tile, Directory and Memory

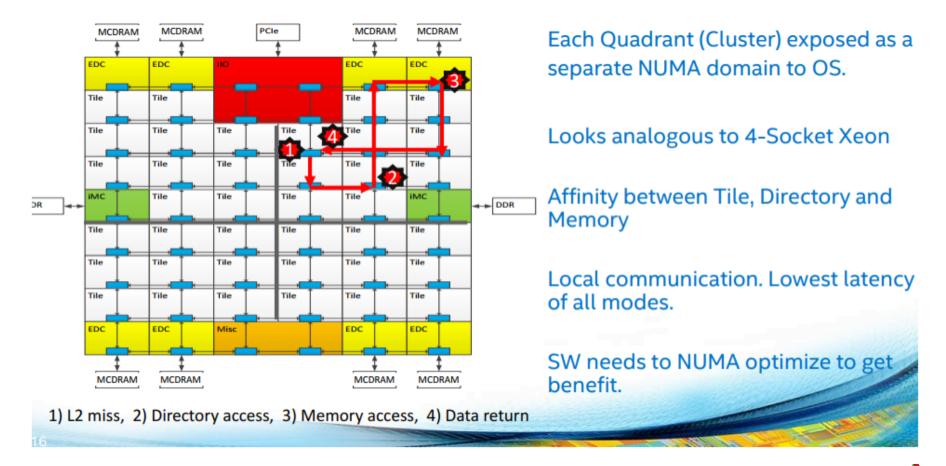
Most general mode. Lower performance than other modes.

Typical Read L2 miss

- 1. L2 miss encountered
- 2. Send request to the distributed directory
- 3. Miss in the directory. Forward to memory
- 4. Memory sends the data to the requestor

Cluster Modes: Quadrant

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return

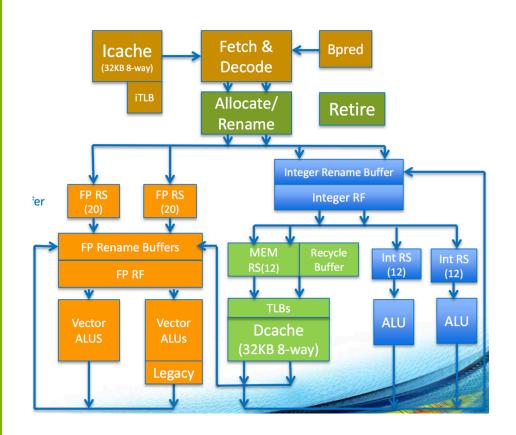

Chip divided into four virtual Quadrants

Address hashed to a Directory in the same quadrant as the Memory

Affinity between the Directory and Memory

Lower latency and higher BW than all-to-all. SW Transparent.

Cluster Modes: Sub-NUMA Clustering


KNL TILE

- Two CPUs
- 2 vector units (VPUs) per core
- 1 MB Shared L2 cache
 - Coherent across all tiles (32-36 MB total)
 - 16 Way
 - 1 line read and $\frac{1}{2}$ line write per cycle
- Caching/Home agent
 - Distributed tag directory, keeps L2s coherent
 - Implements MESIF cache coherence protocol
 - Interface to mesh

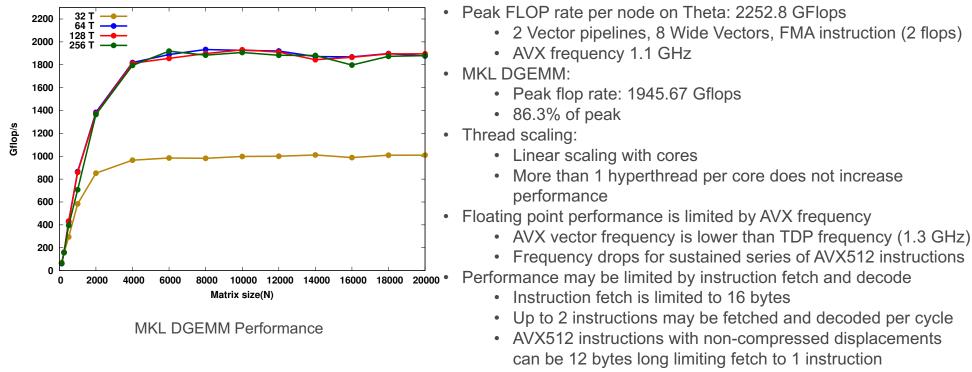
KNL CORE

- Based on Silvermont (Atom)
- Functional units:
 - 2 Integer ALUs (Out of Order)
 - 2 Memory units (In Order reserve, OoO complete)
 - 2 VPU's with AVX-512 (Out of Order)
- Instruction Issue & Execute:
 - 2 wide decode/rename/retire
 - 6 wide execute
- L1 data cache
 - 32 KB, 8 way associative
 - 2 64B load ports, 1 64B write port
- 4 Hardware threads per core
 - 1 active thread can use full resources of core

Argonne 스

- ROB, Rename buffer, RD dynamically paritioned between threads
- Caches and TLBs shared

Knights Landing Instruction Set

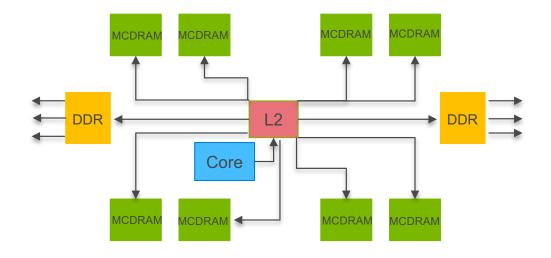

-	5-2600 I (SNB ¹)	E5-2600v3 E (HSW ¹)		KNL (Xeon Phi ²)	Future _{Xeon}	
x	87/MMX	x87/MMX	x87/MMX	x87/MMX	x87/MMX	
	SSE*	SSE*	SSE*	SSE*	SSE*	
	AVX	AVX	AVX	AVX	AVX	۲
		AVX2	AVX2	AVX2	AVX2	Common ISA
		ВМІ	вмі	вмі	вмі	ē
				AVX-512F	AVX-512F	Ē
	AVX-512CD					Ö
					AVX-512BW	
1 0	Province Code	nome Intel® Ve			AVX-512DQ	
	 Previous Code name Intel[®] Xeon[®] processors Xeon Phi = Intel[®] Xeon Phi[™] processor 				AVX-512VLO	
	TSX 1 TSX 1					
	AVX-512PF					
Se	Segment Specific ISA					

- KNL implements x86 legacy instructions
 - Don't need to recompile
- KNL introduces AVX-512 instruction
 - 512F foundation
 - 512 bit FP and integer vectors
 - 32 registers and 8 mask register
 - Gather/scatter
 - 512CD conflict detection
 - 512PF gather/scatter prefetch
 - 512ER reciprocal and sqrt estimates
 - KNL does not have
 - TSX transactional memory
 - 512BW byte/word (8/16 bit)
 - 512DQ dword/quad-word (32/64b)
 - 512VLO vector length orthogonality

•

DGEMM PERFORMANCE ON THETA

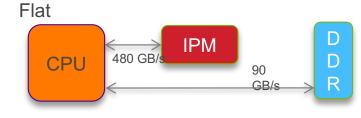
 Thermal limitations restrict sustained AVX512 performance to around 1.8 instructions per cycle

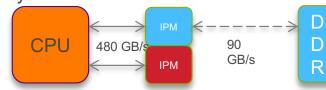


MEMORY

- Two memory types
 - In Package Memory (IPM)
 - 16 GB MCDRAM
 - ~485 GB/s bandwidth
 - Off Package Memory (DDR)
 - Up to 384 GB
 - ~90 GB/s bandwidth


One address space


- Minor NUMA effects
- Sub-NUMA clustering mode creates four NUMA domains



MEMORY MODES - IPM AND DDR SELECTED AT NODE BOOT TIME

Hybrid

- Memory configurations
 - Cached:
 - DDR fully cached by IPM
 - No code modification required
 - Less addressable memory
 - · Bandwidth and latency worse than flat mode
 - Flat:
 - Data location completely user managed
 - Better bandwidth and latency
 - More addressable memory
 - Hybrid:
 - 1/4, 1/2 IPM used as cache rest is flat
- Managing memory:
 - jemalloc & memkind libraries
 - numctl command
 - Pragmas for static memory allocations

STREAM TRIAD BENCHMARK PERFORMANCE

- Measuring and reporting STREAM bandwidth is made more complex due to having MCDRAM and DDR
- Memory bandwidth depends on
 - Mode: flat or cache
 - Physical memory: mcdram or ddr
 - Store type: non-temporal streaming vs regular
- Peak STREAM Triad bandwidth occurs in Flat mode with streaming stores:
 - from MCDRAM, 485 GB/s
 - from DDR, 88 GB/s
- Observations:
 - No significant performance differences have yet been observed in different cluster modes (Quad, SNC-4, ...)
 - Maximum measured single core bandwidth is 14 GB/s. Need about half the cores to saturate MCDRAM bandwidth
 - Core specialization improves memory bandwidth by ~10%

Case	GB/s with SS	GB/s w/o SS
Flat, MCDRAM	485	346
Flat, DDR	88	66
Cache, MCDRAM	352	344
Cache, DDR	59	67

STREAM TRIAD BENCHMARK PERFORMANCE

- Cache mode peak STREAM triad bandwidth is lower
 - Bandwidth is 25% lower than Flat mode
 - Due to an additional read operation on write
- Cache mode bandwidth has considerable variability
 - Observed performance ranges from 225-352 GB/s
 - Due to MCDRAM direct mapped cache conflicts
- Streaming stores (SS) :
 - Streaming stores on KNL by-pass L1 & L2 and write to MCDRAM cache or memory
 - Improve performance in Flat mode by 33% by avoiding a read-for-ownership operation
 - Doesn't improve performance in Cache mode, can lower performance from DDR

Case	GB/s with SS	GB/s w/o SS
Flat, MCDRAM	485	346
Flat, DDR	88	66
Cache, MCDRAM	352	344
Cache, DDR	59	67

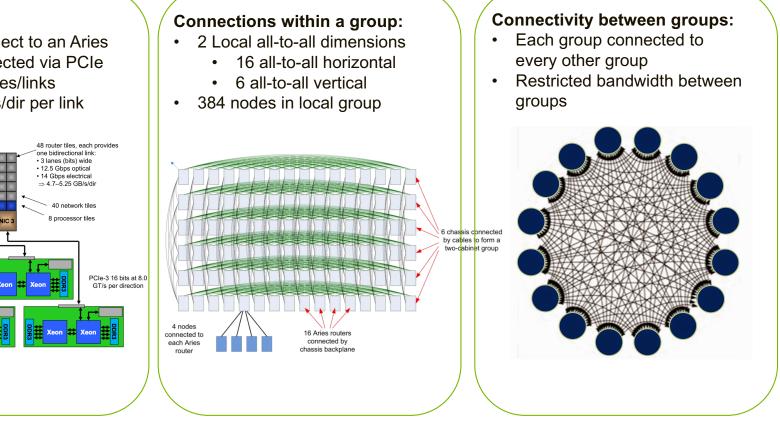
MEMORY LATENCY

	Cycles	Nano seconds
L1 Cache	4	3.1
L2 Cache	20	15.4
MCDRAM	220	170
DDR	180	138

OPENMP OVERHEADS

EPCC OpenMP Benchmarks

Threads	Barrier (µs)	Reduction (µs)	Parallel For (µs)
1	0.1	0.7	0.6
2	0.4	1.3	1.3
4	0.8	1.9	1.9
8	1.5	2.7	2.5
16	1.8	5.9	2.9
32	2.8	7.7	4.0
64	3.9	10.4	5.6
128	5.3	13.7	7.3
256	7.8	19.4	10.5


- OpenMP costs related to cost of memory access
 - KNL has no shared last level cache
- Operations can take between 130 25,000 cycles
- Cost of operations increases with thread count
 - Scales as ~C*threads^{1/2}

ARIES DRAGONFLY NETWORK

Aries Router:

- 4 Nodes connect to an Aries
- 4 NIC's connected via PCIe
- 40 Network tiles/links
- 4.7-5.25 GB/s/dir per link

MPI BANDWIDTH AND MESSAGING RATE

► 1P

► 2P

🗕 4P

- 8P

🛏 16P

🗕 32P

● ● 64P

1 24 24 at 84 ,64 324 6at 284

OSU PtoP MPI Multiple Bandwidth / Message Rate Test on Theta

Messaging Rate:

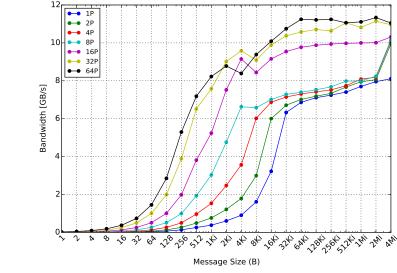
25

Messaging Rate [Millions msgs/sec]

15

- Maximum rate of 23.7 MMPS
 - At 64 ranks per node, 1 byte, window size 128
- Increases generally proportional to core count for small message sizes

250


Sir

Message Size (B)

2°

Bandwidth:

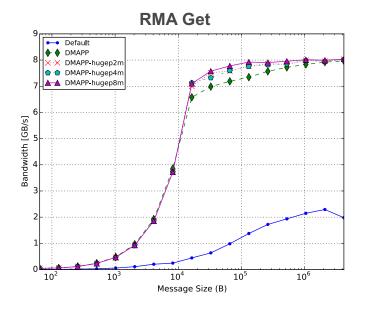
- Peak sustained bandwidth of 11.4 GB/s to nearest neighbor
- 1 rank capable of 8 GB/s
- For smaller messages more ranks improve aggregate off node bandwidth

MPI LATENCY

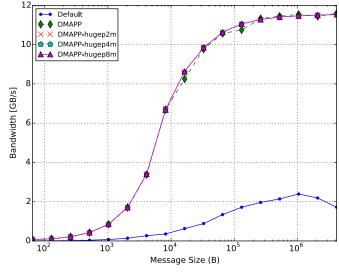
OSU Ping Pong, Put, Get Latency

Benchmark	Zero Bytes (µs)	One Byte (µs)
Ping Pong	3.07	3.22
Put	0.61	2.90
Get	0.61	4.70

MPI ONE SIDED (RMA)

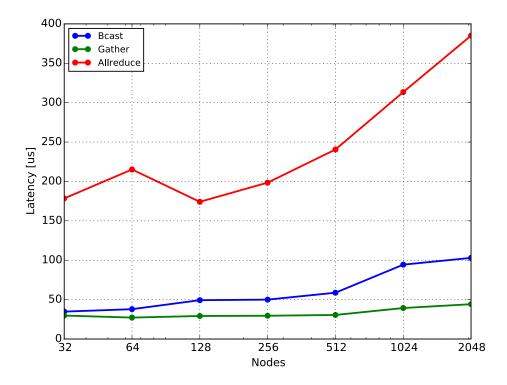

OSU One Sided MPI Get Bandwidth and Bi-Directional Put Bandwidth

RMA Get


- 2 GB/s using default configuration (uGNI)
- 8 GB/s using RMA over DMAPP
- Huge pages also help.

RMA Put

- 2 GB/s using default configuration (uGNI)
- 11.6 GB/s peak bi-directional bandwidth over DMAPP
- No significant benefit from huge pages



MPI COLLECTIVE PERFORMANCE

OSU MPI Gather, Bcast, and Allreduce Benchmarks

- Node counts from 32 to 2048
- 1 process per node
- 8 KB message sizes

POWER EFFICIENCY

- Theta #7 on Green500 (Nov. 2016)
- For high compute intensity, 1 thread per core was most efficient
 - Avoids contention with shared resources
- MCDRAM is a 4x improvement over DDR4 in power efficiency

Threads per Core	Time (s)	Power (W)	Efficiency (GF/W)
1	110.0	284.6	4.39
2	118.6	285.4	4.06
4	140.3	295.0	3.32

Memory Type	Bandwidth GB/s	Power (W)	Efficiency (GB/s/W)
MCDRAM	449.5	270.5	1.66
DDR4	87.1	224.4	0.39

COMPARISON OF THETA (KNL) TO MIRA (BG/Q)

- More local parallelism
 - 64 (KNL) vs 16 (BG/Q)
 - 4 hardware threads on both
- Significantly fewer nodes, 48K -> 3.6K
- Clock speed drops, 1.6 GHz -> 1.1 GHz
- Increased vector length
 - 8 wide vectors (KNL) vs 4 wide vectors (BG/Q)
- Increased node performance
 - 2.4 TF (KNL) vs 0.2 TF (BG/Q)
- Instruction issue
 - Out-of-order (KNL) vs in-order (BG/Q)
 - 2 wide instruction issue on both
 - 2 floating point instructions per cycle (KNL) vs 1 per cycle (BG/Q)
- Memory Hierarchy
 - MCDRAM & DDR (KNL) vs uniform 16 GB DDR (BG/Q)
- Different network topology
 - 5D torus vs Dragonfly
- NIC connectivity
 - PCIe (Aries, Omni-Path) vs direct crossbar connection (BG/Q)

www.anl.gov