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U.S. DOE Potential System Architecture Targets
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System	attributes 2010 2017-2018 2021-2022

System peak 2	Peta 150-200	Petaflop/sec 1	Exaflop/sec

Power 6	MW 15	MW 20	MW

System	memory 0.3 PB 5	PB 32-64 PB

Node	performance 125	GF 3	TF 30	TF 10	TF 100	TF

Node	memory	BW 25 GB/s 0.1TB/sec 1	TB/sec 0.4TB/sec 4	TB/sec

Node	concurrency 12 O(100) O(1,000) O(1,000) O(10,000)

System	size	(nodes) 18,700 50,000 5,000 100,000 10,000

Total Node	
Interconnect	BW 1.5	GB/s 20	GB/sec 200GB/sec

MTTI days O(1day) O(1	day)

Current	
production

Planned	
Upgrades	

(e.g.,	CORAL)

Exascale
Goals

[Includes	some	modifications	to	the	DOE	Exascale report]
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General Trends in System Architecture

§ Number	of	nodes	is	increasing,	but	at	a	moderate	pace

§ Number	of	cores/threads	on	a	node	is	increasing	rapidly

§ Each	core	is	not	increasing	in	speed	(clock	frequency)

§ Chip	logic	complexity	decreasing	(in-order	instructions,	no	
pipelining,	no	branch	prediction)

§ What	does	this	mean	for	networks?
– More	cores	will	drive	the	network

– More	sharing	of	the	network	infrastructure

– The	aggregate	amount	of	communication	from	each	node	will	
increase	moderately,	but	will	be	divided	into	many	smaller	messages

– A	single	core	will	not	be	able	to	drive	the	network	fully
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A Simplified Network Architecture

§ Hardware	components
– Processing	cores	and	

memory	subsystem
– I/O	bus	or	links
– Network	

adapters/switches

§ Software	components
– Communication	stack

§ Balanced	approach	
required	to	maximize	
user-perceived	network	
performance

ATPESC	Workshop	(07/31/2017)
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Bottlenecks on Traditional Network Adapters

§ Network	speeds	saturated	at	
around	1Gbps
– Features	provided	were	limited

– Commodity	networks	were	not	
considered	scalable	enough	for	
very	large-scale	systems
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Ethernet (1979 - ) 10 Mbit/sec

Fast Ethernet (1993 -) 100 Mbit/sec

Gigabit Ethernet (1995 -) 1000 Mbit /sec

ATM (1995 -) 155/622/1024 Mbit/sec

Myrinet (1993 -) 1 Gbit/sec

Fibre Channel (1994 -) 1 Gbit/sec
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End-host Network Interface Speeds

§ Recent	network	technologies	provide	high	bandwidth	links
– InfiniBand	EDR	gives	100	Gbps per	network	link

• Upcoming	networks	expected	to	increase	that	by	several	fold

– Multiple	network	links	becoming	a	common	place
• ORNL	Summit	and	LLNL	Sierra	machines,	Japanese	Post	T2K	machine
• Torus	style	or	other	multi-dimensional	networks

§ End-host	peak	network	bandwidth	is	“mostly”	no	longer	
considered	a	major	technological	limitation

§ Network	latency	is	still	an	issue
– That’s	a	harder	problem	to	solve	– limited	by	physics,	not	technology

• There	is	some	room	to	improve	it	in	current	technology	(trimming	the	fat)
• Significant	effort	in	making	systems	denser	so	as	to	reduce	network	latency

§ Other	important	metrics:	message	rate,	congestion,	…
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Simple Network Architecture (past systems)

§ Processor,	memory,	
network	are	all	
decoupled

ATPESC	Workshop	(07/31/2017)
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Integrated Memory Controllers (current systems)

§ In	the	past	10	years	or	so,	memory	
controllers	have	been	integrated	on	
to	the	processor

§ Primary	purpose	was	scalable	
memory	bandwidth	(NUMA)

§ Also	helps	network	communication
– Data	transfer	to/from	network	requires	

coordination	with	caches

§ Several	network	I/O	technologies	
exist
– PCIe,	HTX,	NVLink
– Expected	to	provide	higher	bandwidth	

than	what	network	links	will	have

ATPESC	Workshop	(07/31/2017)
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Integrated Networks (current/future systems)
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Processing Bottlenecks in Traditional Protocols

§ Ex:	TCP/IP,	UDP/IP

§ Generic	architecture	for	all	networks

§ Host	processor	handles	almost	all	
aspects	of	communication
– Data	buffering	(copies	on	sender	and	

receiver)

– Data	integrity	(checksum)

– Routing	aspects	(IP	routing)

§ Signaling	between	different	layers
– Hardware	interrupt	on	packet	arrival	or	

transmission

– Software	signals	between	different	
layers	to	handle	protocol	processing	in	
different	priority	levels

ATPESC	Workshop	(07/31/2017)
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Network Protocol Stacks: The Offload Era

§ Modern	networks	are	spending	more	and	more	network	real-estate	on	
offloading	various	communication	features	on	hardware

§ Network	and	transport	layers	are	hardware	offloaded	for	most	modern	
networks
– Reliability	(retransmissions,	CRC	checks),	packetization
– OS-based	memory	registration,	and	user-level	data	transmission
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Comparing Offloaded Network Stacks with 
Traditional Network Stacks
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Current State for Network APIs

§ A	large	number	of	network	vendor	specific	APIs
– InfiniBand verbs,	Mellanox MXM,	IBM	PAMI,	Cray	Gemini/DMAPP,	…

§ Recent	efforts	to	standardize	these	low-level	communication	
APIs
– Open	Fabrics	Interface	(OFI)

• Effort	from	Intel,	CISCO,	etc.,	to	provide	a	unified	low-level	communication	
layer	that	exposes	features	provided	by	each	network

– Unified	Communication	X	(UCX)
• Effort	from	Mellanox,	IBM,	ORNL,	etc.,	to	provide	a	unified	low-level	
communication	layer	that	allows	for	efficient	MPI	and	PGAS	communication

– Portals-4
• Effort	from	Sandia	National	Laboratory	to	provide	a	network	hardware	
capability	centric	API

ATPESC	Workshop	(07/31/2017)
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User-level Communication: Memory Registration
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1. Registration	Request	
• Send	virtual	address	and	length

2. Kernel	handles	virtual->physical	
mapping	and	pins	region	into	
physical	memory
• Process	cannot	map	memory	

that	it	does	not	own	(security	!)

3. Network	adapter	caches	the	
virtual	to	physical	mapping	and	
issues	a	handle

4. Handle	is	returned	to	application

Before	we	do	any	communication:
All	memory	used	for	communication	must	

be	registered
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Send/Receive Communication
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PUT/GET Communication
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Atomic Operations
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Network Protocol Stacks: Specialization

§ Increasing	network	specialization	is	the	focus	today
– The	next	generation	of	networks	plan	to	have	further	support	for	

noncontiguous	data	movement,	and	multiple	contexts	for	multithreaded	
architectures

§ Some	networks,	such	as	the	Blue	Gene	network,	Cray	network	and	
InfiniBand,	are	also	offloading	some	MPI	and	PGAS	features	on	to	
hardware
– E.g.,	PUT/GET	communication	has	hardware	support
– Increasing	number	of	atomic	operations	being	offloaded	to	hardware

• Compare-and-swap,	fetch-and-add,	swap

– Collective	operations
– Portals-based	networks	also	had	support	for	hardware	matching	for	MPI	

send/recv
• Cray	Seastar,	Bull	BMI
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Traditional Network Topologies: Crossbar

§ A	network	topology	describes	how	different	network	
adapters	and	switches	are	interconnected	with	each	other

§ The	ideal	network	topology	(for	performance)	is	a	crossbar
– Alltoall connection	between	network	adapters

– Typically	done	on	a	single	network	ASIC

– Current	network	crossbar	ASICs	go	up	to	64	ports;	too	expensive	to	
scale	to	higher	port	counts

– All	communication	is	nonblocking

ATPESC	Workshop	(07/31/2017)
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Traditional Network Topologies: Fat-tree

§ The	most	common	topology	for	small	and	medium	scale	
systems	is	a	fat-tree
– Nonblocking fat-tree	switches	available	in	abundance

• Allows	for	pseudo	nonblocking communication
• Between	all	pairs	of	processes,	there	exists	a	completely	nonblocking
path,	but	not	all	paths	are	nonblocking

– More	scalable	than	crossbars,	but	the	number	of	network	links	still	
increases	super-linearly	with	node	count
• Can	get	very	expensive	with	scale

ATPESC	Workshop	(07/31/2017)
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Network Topology Trends
§ Modern	topologies	are	moving	towards	

more	“scalability”	(with	respect	to	cost,	not	
performance)

§ Blue	Gene,	Cray	XE/XK,	and	K	
supercomputers	use	a	torus-network;	Cray	
XC	uses	dragonfly
– Linear	increase	in	the	number	of	

links/routers	with	system	size
– Any	communication	that	is	more	than	one	

hop	away	has	a	possibility	of	interference	–
congestion	is	not	just	possible,	but	common

– Even	when	there	is	no	congestion,	such	
topologies	increase	the	network	diameter	
causing	performance	loss

§ Take-away:	topological	locality	is	important	
and	its	not	going	to	get	better

ATPESC	Workshop	(07/31/2017)
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Network Congestion Behavior: IBM BG/P
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2D Nearest Neighbor: Process Mapping (XYZ)
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Nearest Neighbor Performance: IBM BG/P
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Network Interactions with Memory/Cache

§ Most	network	interfaces	understand	and	work	with	the	cache	
coherence	protocols	available	on	modern	systems
– Users	do	not	have	to	ensure	that	data	is	flushed	from	cache	before	

communication

– Network	and	memory	controller	hardware	understand	what	state	the	
data	is	in	and	communicate	appropriately

ATPESC	Workshop	(07/31/2017)
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Send-side Network Communication
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Receive-side Network Communication
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Network/Processor Interoperation Trends

§ Direct	cache	injection
– Most	current	networks	inject	data	into	memory

• If	data	is	in	cache,	they	flush	cache	and	then	inject	to	memory

– Some	networks	are	investigating	direct	cache	injection
• Data	can	be	injected	directly	into	the	last-level	cache

• Can	be	tricky	since	it	can	cause	cache	pollution	if	the	incoming	data	is	not	
used	immediately

§ Atomic	operations
– Current	network	atomic	operations	are	only	atomic	with	respect	to	

other	network	operations	and	not	with	respect	to	processor	atomics
• E.g.,	network	fetch-and-add	and	processor	fetch-and-add	might	corrupt	
each	other’s	data

– With	network/processor	integration,	this	is	expected	to	be	fixed

ATPESC	Workshop	(07/31/2017)
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Summary

§ These	are	interesting	times	for	all	components	in	the	overall	
system	architecture:	processor,	memory,	interconnect
– And	interesting	times	for	computational	science	on	these	systems

§ Interconnect	technology	is	rapidly	advancing
– More	hardware	integration	is	the	key	to	removing	bottlenecks	and	

improve	functionality
• Processor/memory/network	integration	is	already	in	progress	and	will	
continue	for	the	foreseeable	future

– Offload	technologies	continue	to	evolve	as	we	move	more	
functionality	to	the	network	hardware

– Network	topologies	are	becoming	more	“shared”	(cost	saving)

ATPESC	Workshop	(07/31/2017)
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