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Programming HPC systems is hard today and will only get 
harder without new approaches  
n  Aspects of programming future large-scale systems 

•  Focusing on full-system, data-awareness and improved productivity 
—  Programming in the small is not the challenge, we must take a broader view  
—  Co-designing the full tool chain with applications  
—  End-to-end awareness is required to avoid point solutions “non-solutions”  

•  Targeting large scale dynamic computation environments  
—  Hardware dynamics: frequency scaling, dark silicon, adaptive routing, …  
—  Software dynamics: system services, in-situ/co-resident services, …  
—  Application dynamics: multiscale andmultiphysics 

n  Programming model goals (What must we deliver?)  
•  High performance – we must be fast  
•  Performance portability – across many kinds of machines over many generations  
•  Programmability – sequential semantics, parallel execution  
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Can we fulfill our programming model goals today? 
We can, to some degree… 
… but at great cost: Programmer Pain 

Task graph for one time step on one node…  
… of a mini-app 

Do you want to schedule this graph? 
(High Performance) 

Do you want to re-schedule this graph 
for every new machine? 
(Performance Portability) 

Do you want to be responsible 
for generating this graph? 

(Programmability) 

Today: programmer’s responsibility 

Tomorrow: programming system’s 
responsibility 
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§ AsyncRecv(X);
§ DoWork(Y);
§ Sync();
§ F(X);

•  How	much	work	should	I	do?		
•  Is	this	performance	portable?	
•  When	does	forward	progress	really	occur?	
•  What	if	I	have	more	work	and	data	

movement	happening	in	DoWork?	
•  What	resources	are	in	use?	Where	is	the	

data?	Who	is	using	it	and	how?	
•  Is	this	modular?	
•  What	if	there	is	a	fault?	

§ 	Concept	from:		Mike	Bauer’s	Thesis	(Stanford),	
Legion:		Programming	Distributed	Heterogeneous	Architectures	with	Logical	Regions	

We need the right programming abstractions to 
achieve our goals 

§ 		Today’s	programming	environments:	
•  Are	using	the	wrong	abstrac:ons…	
•  Focus	on	control	flow,	parallelism	

and	have	low-level	data	abstrac:ons	
(i.e.	no	data	model)	
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Our approach to meeting our programing model 
goals is different 

Functionally correct 
application code 

Mapping to target 
machine 

Extraction of 
parallelism 

Management of 
data transfers 

Task scheduling and 
Latency hiding 

Data-Dependent 
Behavior 

Compiler/
Runtime 

understanding of 
data 

Legion Programs Legion Mappers 

 Legion 
Programming 

System 
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Legion: Separation of Concerns 
Tasks 
(execution model) 

Describe parallel execution 
elements and algorithmic 
operations with sequential 
semantics, out-of-order execution 

Regions 
(data model) 

Describe decomposition of 
computational domain. 

•  Privileges (read-write, read-only, reduce) 

•  Coherence (exclusive, atomic) 

 Mapper Describes how tasks and regions 
should be mapped to the target 
architecture 

Mapper allows architecture-specific optimization without 
effecting the correctness of the task or domain descriptions 

[=](int i) { rho(i) = … } 

rho0 

rho1 

Mapper 
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The Legion programming model: enabling the runtime to 
manage the complexity of a dynamic environment  

Legion 
Program 

Legion Legion 
Mapper 

Machine-Independent 
Specification 
 
Defines application 
correctness 
 
Sequential semantics 

Programmatic interface for performing 
machine-specific and app-specific 
mapping 
 
Only impacts performance 
 
Yesterday: manual mapping 
 
Today: programmatic mapping 
 
Tomorrow: generated mappers 

Analysis! 
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Data Model – Logical Regions 
•  Unbounded set of rows (index space) 

•  Bounded set of columns (fields) 

•  Can be partitioned (disjoint or aliased) 

•  Tasks operate on regions 
–  Must specify which fields and how they 

“use” them (fields and privileges: read, 
write, read+write, exclusive, etc.) 

–  Allows fields to be “sliced” 

•  Tasks launched in program order 
(execution order relaxed based on 
dependencies) 
–  “out of order” software processor 

Index 0 

Field 1 Field 2 Field 3 Field 4 

Index 1 

Index 2 

Index 3 

Index 4 

Index 5 

Index 6 

Index 7 

Index 8 …
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Our approach shows compelling results 
with a full application 

•  High-level application constructs remain 
in MPI form… - essentially all the initial 
setup was kept   

•  Full right hand side function 
implemented in Legion including all 
communication (the full stencil 
computation and all chemistry 
calculations)   

•  Ported production combustion 
application (S3D)  

§  Sufficient complexity to validate our 
approach – beyond the “Proxy”  

n ~2-3X faster than MPI+OpenACC 

n ~7X faster than MPI only 

n Enabling new science that is not 
possible with current approaches    
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•  Legion is 
–  a C++ runtime 
–  a programming model 

 

•  Regent is a programming language 
–  For the Legion programming model 
–  Current implementation is embedded in Lua 
–  Has an optimizing compiler 

•  This tutorial will focus on Regent 



Regent/Legion Design Goals 
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•  Sequential semantics 
–  The better to understand what you write 
–  Parallelism is extracted automatically 

 

•  Throughput-oriented 
–  The latency of a single thread/process is (mostly) irrelevant 
–  The overall time is what matters 

 

•  Runtime decision making 
–  Because machines are unpredictable/dynamic 



Throughput-Oriented 
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•  Keep the machine busy 
 
•  How? Ideally, 

–  Every core has a queue of independent work to do 
–  Every memory unit has a queue of transfers to do 
–  At all times 



Consequences 
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•  Highly asynchronous 
–  Minimize synchronization 
–  Esp. global synchronization 

 

•  Sequential semantics but support for 
parallelism 

 
•  Emphasis on describing the structure of data 

–  Later 



Regent Stack 
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Regent 
Language and 

compiler 
Legion 

High-level runtime 

Realm 
Low-level runtime 

Terra 
Sequential 

performance 

Lua 
Host language 



Regent in Lua 
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•  Embedded in Lua 
–  Popular scripting language in the graphics community 

 
•  Excellent interoperation with C 

–  And with other languages 
 
•  Python-ish syntax 

–  For both Lua and Regent 



•  Examples Overview/1.rg & 2.rg 
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•  To run: 
–  ssh –l USER bootcamp.regent-lang.org 
–  cd Bootcamp/Overview 
–  qsub r1.sh 
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Tasks 



Tasks 
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•  Tasks are Regent’s unit of parallel execution 
–  Distinguished functions that can be executed 

asynchronously 
 
•  No preemption 

–  Tasks run until they block or terminate 
–  And ideally they don’t block … 



Blocking 
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•  Blocking means a task cannot continue 
–  So the task stops running 

 
•  Blocking does not prevent independent work from 

being done 
–  If the processor has something else to do 
–  Does prevent the task from continuing and 

launching more tasks 
 
•  Avoid blocking. 



Subtasks 
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•  Tasks can call subtasks 
–  Nested parallelism 

 
•  Terminology: parent and child tasks 



Example 
 
task tester(sum: int64) 
…	

end 
 
task main() 

var sum: int64 = summer(10)  
sum = tester(sum) 
c.printf("The answer is: %d\n",sum) 

end ATPESC 2017 21 



If a parent task inspects the result of a child task, 
the parent task blocks pending completion of 

the child task. 

ATPESC 2017 22 



•  Examples Tasks/1.rg & 2.rg 
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•  Reminder: 
cd Bootcamp/Tasks 
qsub r1.sh 
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Legion Prof 



Legion Prof 
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•  A tool for showing performance timeline 
–  Each processor is a timeline 
–  Each operation is a time interval 
–  Different kinds of operations have different colors 

 
•  White space = idle time 



Example 1: Legion Prof 
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cd Bootcamp/Tasks qsub rp1.sh 
make prof 
 

http://bootcamp.regent-lang.org/~USER/prof1 



Example 2: Legion Prof 
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cd Bootcamp/Tasks qsub rp2.sh 
make prof 
 

http://bootcamp.regent-lang.org/~USER/prof2 



Mapping 

•  How does Regent/Legion decide on which 
processor to run tasks? 

 
•  This decision is under the mapper’s control 
 
•  Here we are using the default mapper 

–  Passes out tasks to which CPU on a node is not busy
–  Programmers can write their own mappers
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Parallelism 



Example Tasks/3.rg 
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•  “for all” style parallelism 
 
•  Note the order of completion of the tasks 

–  main() finishes first (or almost first)! 
–  All subtasks managed by the runtime system 
–  Subtasks execute in non-deterministic order 

 
•  How? 

–  Regent notices that the tasks are independent 
–  No task depends on another task for its inputs 



Runtime Dependence Analysis 
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•  Example Tasks/4.rg is more involved 
–  Positive tasks (print a positive integer) 
–  Negative tasks (print a negative integer) 

 

•  Some tasks are dependent 
–  The task for -5 depends on the task for 5 
–  Note loop in main() does not block on the value of j! 

 

•  Some are independent 
–  Positive tasks are independent of each other 
–  Negative tasks are independent of each other 



ATPESC 2017 24 

Legion Spy 



Legion Spy 
 
•  A tool for showing ordering dependencies 
 
•  Very useful for figuring out why things are not running 

in parallel 

ATPESC 2017 33 



Example Tasks/4.rg: Legion Spy 
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cd Bootcamp/Tasks qsub 
rs4.sh 
make spy 
 
http://bootcamp.regent-lang.org/~USER/spy4.pdf 



Workflow 
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•  Use Legion Prof to find idle time 
–  white space 

 
•  Use Legion Spy to examine tasks that are 

delayed 
–  What are they waiting for?! 
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Exercise 1 



Computing the Area of a Unit Circle 
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•  A Monte Carlo simulation to 
compute the area of a unit 
circle inscribed in a square 

 
•  Throw darts 

–  Fraction of darts landing in 
the circle = ratio of circle’s 
area to square’s area 

1 
 

y 
 

x 



Computing the Area of a Unit Circle 
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•  Example Pi/1.rg 
–  Slow! 
–  Why? 



Exercise 1 
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•  Compare Pi/1.rg and Pi/x1.rg  
–  Identify use of multiple trials per subtask 

 

•  Modify Pi/x1.rg  (change “terra hits” to “task hits”)  

•  Uses 
–  4 subtasks 
–  2500 trials per subtask 

• Which is faster? Why? 
–  Hint: Use Legion Prof and Legion Spy  
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Terra 



Leaf Tasks 
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•  Leaf tasks call no other tasks 
–  The “leaves” of the task tree 

 
•  Leaf tasks are sequential programs 

–  And generally where the heavy compute will be 
 

•  Thus, leaf tasks should be optimized for 
latency, not throughput 
–  Want them to finish as fast as possible! 



Terra 
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•  Terra is a low-level, typed language embedded in Lua 
 
•  Designed to be like C 

–  And to compile to similarly efficient code 
 
•  Also supports vector intrinsics 

–  Not illustrated today 



Terra Example 
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•  Terra/1.rg converts the hits task in Terra/ x1.rg to a 
Terra function 

 
•  Trivial in this example 

–  Just change ”task” to “terra”	

–  Marginally faster 
•  On average …	



Considerations in  Writing Regent Programs 
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•  The granularity of tasks must be sufficient 
–  Don’t write very short running tasks 

 
•  Don’t block in tasks that launch many subtasks 
 

•  Terra is an option for heavy sequential 
computations 
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Structured Regions 



Regions 
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•  A region is a (typed) collection 
 
•  Regions are the cross product of 

–  An index space 
–  A field space 



StructuredRegions/1.rg 
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Discussion 

ATPESC 2017 48 

•  Regions are the way to organize large data collections in 
Regent 

 
•  Regions can be 

–  Structured (e.g., like arrays) 
–  Unstructured (e.g., pointer data structures) 

 

•  Any number of fields 
•  Built-in support for 1D, 2D and 3D index spaces 



Privileges 
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•  A task that takes region arguments must 
–  Declare its privileges on the region 
–  Reads, Writes, Reduces 

 

•  The task may only perform operations for which 
it has privileges 
–  Including any subtasks it calls 



•  Example StructuredRegions/2.rg 
 
•  Example StructuredRegions/3.rg 
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Reduction Privileges 
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•  StructuredRegions/4.rg 
–  A sequence of tasks that increment elements of a region 
–  With Read/Write privileges 

 

•  StructuredRegions/5.rg 
–  4.rg but with Reduction privileges 

 

•  Note: Reductions can create additional copies 
–  To get more parallelism 
–  Under mapper control 
–  Not always preferred to Read/Write privileges 
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Partitioning 



Partitioning 
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•  To enable parallelism on a region, partition it into 
smaller pieces 
–  And then run a task on each piece 

 

•  Legion/Regent have a rich set of partitioning 
primitives 



Partitioning Example 
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Partitioning Example 
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Equal Partitions 
 
•  One commonly used primitive is to split a region 

into a number of (nearly) equal size subregions 
 
•  Partitioning/1.rg 
 
•  Partitioning/2.rg 

ATPESC 2017 56 



Discussion 
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•  Partitioning does not create copies 
–  It names subsets of the data 

 

•  Partitioning does not remove the parent region 
–  It still exists and can be used 

 

•  Regions and partitions are first-class values 
–  Can be created, destroyed, stored in data structures, passed to and 

returned from tasks 



Region Trees 

0 

bit_region 

1 2 3 4 5 
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More Discussion 
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•  The same data can be partitioned multiple ways 
–  Again, these are just names for subsets 

 
•  Subregions can themselves be partitioned 



Dependence Analysis 
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•  Regent uses tasks’ region arguments to 
compute which tasks can run in parallel 
–  What region is being accessed 

•  Does it overlap with another region that is in use? 

–  What field is being accessed 
•  If a task is using an overlapping region, is it using the same field? 

–  What are the privileges? 
•  If two tasks are accessing the same field, are they both reading 

or both reducing? 



A Crucial Fact 
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•  Regent analyzes sibling tasks 
–  Tasks launched directly by the same parent task 

 
•  Theorem: Analyzing dependencies between sibling tasks is 

sufficient to guarantee sequential semantics 
 
     - Question:  Why does this hold? (Intuitively) 
 
•  Never check for dependencies otherwise 

–  Crucial to the overall design of Regent 



Consequences 
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•  Dependence analysis is a source of runtime overhead 
 

•  Can be reduced by reducing the number of sibling tasks 
–  Group some tasks into subtasks 

 

•  But beware! 
–  This may also reduce the available parallelism 

 

•  Partitioning/3.rg 



Partitioning/3.rg 
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•  Note that passing a region to a task does not mean 
the data is copied to where that task runs 
–  C.f., launcher task must name the parent region for type 

checking reasons 
 

•  If the task doesn’t touch a region/field, that data 
doesn’t need to move 



Fills 
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•  A better way to initialize regions is to use fill 
operations 

 
fill(region.field, value) 

 
•  Partitioning/4.rg 



Multiple Partitions 
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0 

bit_region 

1  2 
 
10 elements each 

3 4 5 0 1 2 

20 elements each 



Discussion 
 
•  Different views onto the same data 
 
•  Again, can have multiple views in use at the same 

time 
 
•  Regent will figure out the data dependencies 
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Exercise 2 

•  Modify Partitioning/4.rg to 
 
•  Have two partitions of bit_region 

–  One with 3 subregions of size 20 
–  One with 6 subregions of size 10 

 
•  In a loop, alternately launch subtasks on one 

partition and then the other •  Edit x2.rg ATPESC 2017 59 



Aliased Partitions 
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•  So far all of our examples have been disjoint 
partitions 

 
•  It is also possible for partitions to be aliased 

–  The subregions overlap 
 
•  Partitioning/5.rg 



Partitioning Summary 
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•  Significant Regent applications have interesting region trees 
–  Multiple views 
–  Aliased partitions 
–  Multiple levels of nesting 

 

•  And complex task dependencies 
–  Subregions, fields, privileges, coherence 

 
•  Regions express locality 

–  Data that will be used together 
–  An example of a “local address space” design 

•  Tasks can only access their region arguments 



Regions Review 
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•  A region is a (typed) collection 
 
•  Regions are the cross product of 

–  An index space 
–  A field space 

 
•  A structured region has a structured index space 

–  E.g., int1d, int2d, int3d 
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Dependent Partitioning 



Partitioning, Revisited 
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•  Why do we want to partition data? 
–  For parallelism 
–  We will launch many tasks over many subregions 

 
•  A problem 

–  We often need to partition multiple data 
structures in a consistent way 

–  E.g., given that we have partitioned the nodes a 
particular way, that will dictate the desired 
partitioning of the edges 



Dependent Partitioning 
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•  Distinguish two kinds of partitions 
 
•  Independent partitions 

–  Computed from the parent region, using, e.g., 
•  partition(equals, … ) 

 

•  Dependent partitions 
–  Computed using another partition 



Dependent Partitioning Operations 
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•  Image 
–  Use the image of a field in a partition to define a new 

partition 
 
•  Preimage 

–  Use the pre-image of a field in a partition … 
 
•  Set operations 

–  Form new partitions using the intersection, union, and 
set difference of other partitions 



Image 
•  Computes elements reachable via a 

field lookup 
–  Can be applied to index space or 

another partition 
–  Computation is distributed based 

on location of data 
•  Regent understands relationship 

between partitions 
–  Can check safety of region relation 

assertions at compile time IS 1 IS2 

source partition 
pointer 

field destination 
index space 

s1 s2 s3 s1 s2  s3 
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Preimage 
•  Inverse of image 

–  Computes elements that 
reach a given subspace 

–  Preserves disjointness 
 
 
•  Multiple images/preimages 

can be combined 
–  Can capture complex task 

access patterns 
IS1 IS2 

source partition pointer 
field destination 

index space 

s1 s2 s3 s1 s2  s3 
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