
Los Alamos National Laboratory

2/8/17 | 1

The Legion Programming Model

ATPESC – 2017

(and the Regent compiler)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA U N C L A S S I F I E D – LA-UR-16-20235

Programming HPC systems is hard today and will only get
harder without new approaches
n  Aspects of programming future large-scale systems

•  Focusing on full-system, data-awareness and improved productivity
—  Programming in the small is not the challenge, we must take a broader view
—  Co-designing the full tool chain with applications
—  End-to-end awareness is required to avoid point solutions “non-solutions”

•  Targeting large scale dynamic computation environments
—  Hardware dynamics: frequency scaling, dark silicon, adaptive routing, …
—  Software dynamics: system services, in-situ/co-resident services, …
—  Application dynamics: multiscale andmultiphysics

n  Programming model goals (What must we deliver?)
•  High performance – we must be fast
•  Performance portability – across many kinds of machines over many generations
•  Programmability – sequential semantics, parallel execution

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA U N C L A S S I F I E D – LA-UR-16-20235

Can we fulfill our programming model goals today?
We can, to some degree…
… but at great cost: Programmer Pain

Task graph for one time step on one node…
… of a mini-app

Do you want to schedule this graph?
(High Performance)

Do you want to re-schedule this graph
for every new machine?
(Performance Portability)

Do you want to be responsible
for generating this graph?

(Programmability)

Today: programmer’s responsibility

Tomorrow: programming system’s
responsibility

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA U N C L A S S I F I E D – LA-UR-16-20235

§ AsyncRecv(X);
§ DoWork(Y);
§ Sync();
§ F(X);

•  How	much	work	should	I	do?		
•  Is	this	performance	portable?	
•  When	does	forward	progress	really	occur?	
•  What	if	I	have	more	work	and	data	

movement	happening	in	DoWork?	
•  What	resources	are	in	use?	Where	is	the	

data?	Who	is	using	it	and	how?	
•  Is	this	modular?	
•  What	if	there	is	a	fault?	

§ 	Concept	from:		Mike	Bauer’s	Thesis	(Stanford),	
Legion:		Programming	Distributed	Heterogeneous	Architectures	with	Logical	Regions	

We need the right programming abstractions to
achieve our goals

§ 		Today’s	programming	environments:	
•  Are	using	the	wrong	abstrac:ons…	
•  Focus	on	control	flow,	parallelism	

and	have	low-level	data	abstrac:ons	
(i.e.	no	data	model)	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA U N C L A S S I F I E D – LA-UR-16-20235

Our approach to meeting our programing model
goals is different

Functionally correct
application code

Mapping to target
machine

Extraction of
parallelism

Management of
data transfers

Task scheduling and
Latency hiding

Data-Dependent
Behavior

Compiler/
Runtime

understanding of
data

Legion Programs Legion Mappers

 Legion
Programming

System

Los Alamos National Laboratory

2/8/17 | 6

Legion: Separation of Concerns
Tasks
(execution model)

Describe parallel execution
elements and algorithmic
operations with sequential
semantics, out-of-order execution

Regions
(data model)

Describe decomposition of
computational domain.

•  Privileges (read-write, read-only, reduce)

•  Coherence (exclusive, atomic)

 Mapper Describes how tasks and regions
should be mapped to the target
architecture

Mapper allows architecture-specific optimization without
effecting the correctness of the task or domain descriptions

[=](int i) { rho(i) = … }

rho0

rho1

Mapper

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA U N C L A S S I F I E D – LA-UR-16-20235

The Legion programming model: enabling the runtime to
manage the complexity of a dynamic environment

Legion
Program

Legion Legion
Mapper

Machine-Independent
Specification

Defines application
correctness

Sequential semantics

Programmatic interface for performing
machine-specific and app-specific
mapping

Only impacts performance

Yesterday: manual mapping

Today: programmatic mapping

Tomorrow: generated mappers

Analysis!

Slide 8

Data Model – Logical Regions
•  Unbounded set of rows (index space)

•  Bounded set of columns (fields)

•  Can be partitioned (disjoint or aliased)

•  Tasks operate on regions
–  Must specify which fields and how they

“use” them (fields and privileges: read,
write, read+write, exclusive, etc.)

–  Allows fields to be “sliced”

•  Tasks launched in program order
(execution order relaxed based on
dependencies)
–  “out of order” software processor

Index 0

Field 1 Field 2 Field 3 Field 4

Index 1

Index 2

Index 3

Index 4

Index 5

Index 6

Index 7

Index 8 …

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA U N C L A S S I F I E D – LA-UR-16-20235

Our approach shows compelling results
with a full application

•  High-level application constructs remain
in MPI form… - essentially all the initial
setup was kept

•  Full right hand side function
implemented in Legion including all
communication (the full stencil
computation and all chemistry
calculations)

•  Ported production combustion
application (S3D)

§  Sufficient complexity to validate our
approach – beyond the “Proxy”

n ~2-3X faster than MPI+OpenACC

n ~7X faster than MPI only

n Enabling new science that is not
possible with current approaches

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Nodes

0

20000

40000

60000

80000

100000

120000

140000

160000

Th
ro

ug
hp

ut
(P

oin
ts/

s)

Legion
MPI+OpenACC

1.75
X 2.85X

7.2X

Legion & Regent

ATPESC 2017 10

•  Legion is
–  a C++ runtime
–  a programming model

•  Regent is a programming language
–  For the Legion programming model
–  Current implementation is embedded in Lua
–  Has an optimizing compiler

•  This tutorial will focus on Regent

Regent/Legion Design Goals

ATPESC 2017 11

•  Sequential semantics
–  The better to understand what you write
–  Parallelism is extracted automatically

•  Throughput-oriented
–  The latency of a single thread/process is (mostly) irrelevant
–  The overall time is what matters

•  Runtime decision making
–  Because machines are unpredictable/dynamic

Throughput-Oriented

ATPESC 2017 12

•  Keep the machine busy

•  How? Ideally,

–  Every core has a queue of independent work to do
–  Every memory unit has a queue of transfers to do
–  At all times

Consequences

ATPESC 2017 13

•  Highly asynchronous
–  Minimize synchronization
–  Esp. global synchronization

•  Sequential semantics but support for
parallelism

•  Emphasis on describing the structure of data

–  Later

Regent Stack

ATPESC 2017 14

Regent
Language and

compiler
Legion

High-level runtime

Realm
Low-level runtime

Terra
Sequential

performance

Lua
Host language

Regent in Lua

ATPESC 2017 15

•  Embedded in Lua
–  Popular scripting language in the graphics community

•  Excellent interoperation with C

–  And with other languages

•  Python-ish syntax

–  For both Lua and Regent

•  Examples Overview/1.rg & 2.rg

ATPESC 2017 16

•  To run:
–  ssh –l USER bootcamp.regent-lang.org
–  cd Bootcamp/Overview
–  qsub r1.sh

ATPESC 2017 17

Tasks

Tasks

ATPESC 2017 18

•  Tasks are Regent’s unit of parallel execution
–  Distinguished functions that can be executed

asynchronously

•  No preemption

–  Tasks run until they block or terminate
–  And ideally they don’t block …

Blocking

ATPESC 2017 19

•  Blocking means a task cannot continue
–  So the task stops running

•  Blocking does not prevent independent work from

being done
–  If the processor has something else to do
–  Does prevent the task from continuing and

launching more tasks

•  Avoid blocking.

Subtasks

ATPESC 2017 20

•  Tasks can call subtasks
–  Nested parallelism

•  Terminology: parent and child tasks

Example

task tester(sum: int64)
…	

end

task main()

var sum: int64 = summer(10)
sum = tester(sum)
c.printf("The answer is: %d\n",sum)

end ATPESC 2017 21

If a parent task inspects the result of a child task,
the parent task blocks pending completion of

the child task.

ATPESC 2017 22

•  Examples Tasks/1.rg & 2.rg

ATPESC 2017 23

•  Reminder:
cd Bootcamp/Tasks
qsub r1.sh

ATPESC 2017 16

Legion Prof

Legion Prof

ATPESC 2017 25

•  A tool for showing performance timeline
–  Each processor is a timeline
–  Each operation is a time interval
–  Different kinds of operations have different colors

•  White space = idle time

Example 1: Legion Prof

ATPESC 2017 26

cd Bootcamp/Tasks qsub rp1.sh
make prof

http://bootcamp.regent-lang.org/~USER/prof1

Example 2: Legion Prof

ATPESC 2017 27

cd Bootcamp/Tasks qsub rp2.sh
make prof

http://bootcamp.regent-lang.org/~USER/prof2

Mapping

•  How does Regent/Legion decide on which
processor to run tasks?

•  This decision is under the mapper’s control

•  Here we are using the default mapper

–  Passes out tasks to which CPU on a node is not busy
–  Programmers can write their own mappers

ATPESC 2017 21

Parallelism

Example Tasks/3.rg

ATPESC 2017 30

•  “for all” style parallelism

•  Note the order of completion of the tasks

–  main() finishes first (or almost first)!
–  All subtasks managed by the runtime system
–  Subtasks execute in non-deterministic order

•  How?

–  Regent notices that the tasks are independent
–  No task depends on another task for its inputs

Runtime Dependence Analysis

ATPESC 2017 31

•  Example Tasks/4.rg is more involved
–  Positive tasks (print a positive integer)
–  Negative tasks (print a negative integer)

•  Some tasks are dependent
–  The task for -5 depends on the task for 5
–  Note loop in main() does not block on the value of j!

•  Some are independent
–  Positive tasks are independent of each other
–  Negative tasks are independent of each other

ATPESC 2017 24

Legion Spy

Legion Spy

•  A tool for showing ordering dependencies

•  Very useful for figuring out why things are not running

in parallel

ATPESC 2017 33

Example Tasks/4.rg: Legion Spy

ATPESC 2017 34

cd Bootcamp/Tasks qsub
rs4.sh
make spy

http://bootcamp.regent-lang.org/~USER/spy4.pdf

Workflow

ATPESC 2017 35

•  Use Legion Prof to find idle time
–  white space

•  Use Legion Spy to examine tasks that are

delayed
–  What are they waiting for?!

ATPESC 2017 28

Exercise 1

Computing the Area of a Unit Circle

ATPESC 2017 37

•  A Monte Carlo simulation to
compute the area of a unit
circle inscribed in a square

•  Throw darts

–  Fraction of darts landing in
the circle = ratio of circle’s
area to square’s area

1

y

x

Computing the Area of a Unit Circle

ATPESC 2017 38

•  Example Pi/1.rg
–  Slow!
–  Why?

Exercise 1

ATPESC 2017 39

•  Compare Pi/1.rg and Pi/x1.rg
–  Identify use of multiple trials per subtask

•  Modify Pi/x1.rg (change “terra hits” to “task hits”)

•  Uses
–  4 subtasks
–  2500 trials per subtask

• Which is faster? Why?
–  Hint: Use Legion Prof and Legion Spy

ATPESC 2017 32

Terra

Leaf Tasks

ATPESC 2017 41

•  Leaf tasks call no other tasks
–  The “leaves” of the task tree

•  Leaf tasks are sequential programs

–  And generally where the heavy compute will be

•  Thus, leaf tasks should be optimized for
latency, not throughput
–  Want them to finish as fast as possible!

Terra

ATPESC 2017 42

•  Terra is a low-level, typed language embedded in Lua

•  Designed to be like C

–  And to compile to similarly efficient code

•  Also supports vector intrinsics

–  Not illustrated today

Terra Example

ATPESC 2017 43

•  Terra/1.rg converts the hits task in Terra/ x1.rg to a
Terra function

•  Trivial in this example

–  Just change ”task” to “terra”	

–  Marginally faster
•  On average …	

Considerations in Writing Regent Programs

ATPESC 2017 44

•  The granularity of tasks must be sufficient
–  Don’t write very short running tasks

•  Don’t block in tasks that launch many subtasks

•  Terra is an option for heavy sequential
computations

ATPESC 2017 37

Structured Regions

Regions

ATPESC 2017

38

•  A region is a (typed) collection

•  Regions are the cross product of

–  An index space
–  A field space

StructuredRegions/1.rg

ion Bootcamp 201 39 7

0

1

2

3

4

5

6

7

8

Bit
false

false

false

false

false

true

true

true

true

false

Discussion

ATPESC 2017 48

•  Regions are the way to organize large data collections in
Regent

•  Regions can be

–  Structured (e.g., like arrays)
–  Unstructured (e.g., pointer data structures)

•  Any number of fields
•  Built-in support for 1D, 2D and 3D index spaces

Privileges

ATPESC 2017 49

•  A task that takes region arguments must
–  Declare its privileges on the region
–  Reads, Writes, Reduces

•  The task may only perform operations for which
it has privileges
–  Including any subtasks it calls

•  Example StructuredRegions/2.rg

•  Example StructuredRegions/3.rg

ATPESC 2017 50

Reduction Privileges

ATPESC 2017 51

•  StructuredRegions/4.rg
–  A sequence of tasks that increment elements of a region
–  With Read/Write privileges

•  StructuredRegions/5.rg
–  4.rg but with Reduction privileges

•  Note: Reductions can create additional copies
–  To get more parallelism
–  Under mapper control
–  Not always preferred to Read/Write privileges

ATPESC 2017 44

Partitioning

Partitioning

ATPESC 2017 53

•  To enable parallelism on a region, partition it into
smaller pieces
–  And then run a task on each piece

•  Legion/Regent have a rich set of partitioning
primitives

Partitioning Example

ATPESC 2017 54

0

1

2

3

4

5

6

7

8

9

Bit

false

false

false

false

false

true

true

true

true

false

Partitioning Example

ATPESC 2017 55

0

1
2

3

4

5

6
7

8

9

bit_region_partition[0]

bit_region_partition[1]

false

false

false

false

false

true

true

true

true

false

Bit

Equal Partitions

•  One commonly used primitive is to split a region

into a number of (nearly) equal size subregions

•  Partitioning/1.rg

•  Partitioning/2.rg

ATPESC 2017 56

Discussion

ATPESC 2017 57

•  Partitioning does not create copies
–  It names subsets of the data

•  Partitioning does not remove the parent region
–  It still exists and can be used

•  Regions and partitions are first-class values
–  Can be created, destroyed, stored in data structures, passed to and

returned from tasks

Region Trees

0

bit_region

1 2 3 4 5

ATPESC 2017 58

More Discussion

ATPESC 2017 59

•  The same data can be partitioned multiple ways
–  Again, these are just names for subsets

•  Subregions can themselves be partitioned

Dependence Analysis

ATPESC 2017 60

•  Regent uses tasks’ region arguments to
compute which tasks can run in parallel
–  What region is being accessed

•  Does it overlap with another region that is in use?

–  What field is being accessed
•  If a task is using an overlapping region, is it using the same field?

–  What are the privileges?
•  If two tasks are accessing the same field, are they both reading

or both reducing?

A Crucial Fact

ATPESC 2017 61

•  Regent analyzes sibling tasks
–  Tasks launched directly by the same parent task

•  Theorem: Analyzing dependencies between sibling tasks is

sufficient to guarantee sequential semantics

 - Question: Why does this hold? (Intuitively)

•  Never check for dependencies otherwise

–  Crucial to the overall design of Regent

Consequences

ATPESC 2017 62

•  Dependence analysis is a source of runtime overhead

•  Can be reduced by reducing the number of sibling tasks
–  Group some tasks into subtasks

•  But beware!
–  This may also reduce the available parallelism

•  Partitioning/3.rg

Partitioning/3.rg

ATPESC 2017 63

•  Note that passing a region to a task does not mean
the data is copied to where that task runs
–  C.f., launcher task must name the parent region for type

checking reasons

•  If the task doesn’t touch a region/field, that data
doesn’t need to move

Fills

ATPESC 2017 64

•  A better way to initialize regions is to use fill
operations

fill(region.field, value)

•  Partitioning/4.rg

Multiple Partitions

ATPESC 2017 65

0

bit_region

1 2

10 elements each

3 4 5 0 1 2

20 elements each

Discussion

•  Different views onto the same data

•  Again, can have multiple views in use at the same

time

•  Regent will figure out the data dependencies

ATPESC 2017 66

Exercise 2

•  Modify Partitioning/4.rg to

•  Have two partitions of bit_region

–  One with 3 subregions of size 20
–  One with 6 subregions of size 10

•  In a loop, alternately launch subtasks on one

partition and then the other •  Edit x2.rg ATPESC 2017 59

Aliased Partitions

ATPESC 2017 68

•  So far all of our examples have been disjoint
partitions

•  It is also possible for partitions to be aliased

–  The subregions overlap

•  Partitioning/5.rg

Partitioning Summary

ATPESC 2017 69

•  Significant Regent applications have interesting region trees
–  Multiple views
–  Aliased partitions
–  Multiple levels of nesting

•  And complex task dependencies
–  Subregions, fields, privileges, coherence

•  Regions express locality

–  Data that will be used together
–  An example of a “local address space” design

•  Tasks can only access their region arguments

Regions Review

ATPESC 2017 70

•  A region is a (typed) collection

•  Regions are the cross product of

–  An index space
–  A field space

•  A structured region has a structured index space

–  E.g., int1d, int2d, int3d

ATPESC 2017 70

Dependent Partitioning

Partitioning, Revisited

ATPESC 2017 72

•  Why do we want to partition data?
–  For parallelism
–  We will launch many tasks over many subregions

•  A problem

–  We often need to partition multiple data
structures in a consistent way

–  E.g., given that we have partitioned the nodes a
particular way, that will dictate the desired
partitioning of the edges

Dependent Partitioning

ATPESC 2017 73

•  Distinguish two kinds of partitions

•  Independent partitions

–  Computed from the parent region, using, e.g.,
•  partition(equals, …)

•  Dependent partitions
–  Computed using another partition

Dependent Partitioning Operations

ATPESC 2017 74

•  Image
–  Use the image of a field in a partition to define a new

partition

•  Preimage

–  Use the pre-image of a field in a partition …

•  Set operations

–  Form new partitions using the intersection, union, and
set difference of other partitions

Image
•  Computes elements reachable via a

field lookup
–  Can be applied to index space or

another partition
–  Computation is distributed based

on location of data
•  Regent understands relationship

between partitions
–  Can check safety of region relation

assertions at compile time IS 1 IS2

source partition
pointer

field destination
index space

s1 s2 s3 s1 s2 s3

ATPESC 2017 75

Preimage
•  Inverse of image

–  Computes elements that
reach a given subspace

–  Preserves disjointness

•  Multiple images/preimages

can be combined
–  Can capture complex task

access patterns
IS1 IS2

source partition pointer
field destination

index space

s1 s2 s3 s1 s2 s3

ATPESC 2017 76

