
Debbie Bard
Data and Analytics Services
NERSC
ATPSEC IO day

Accelerate
your IO with
the Burst
Buffer

HPC memory hierarchy

Memory
(DRAM)

Storage
(HDD)

CPU
CPU

Far Memory
 (DRAM)

Far Storage
 (HDD)

Near Storage
 (SSD)

Near Memory
 (HBM)

Past Future

On
Chip

On
Chip

Off
Chip

Off
Chip

- 2 -

HPC memory hierarchy

CPU

Far Memory
 (DRAM)

Far Storage
 (HDD)

Near Storage
 (SSD)

Near Memory
 (HBM)

Future

On
Chip

Off
Chip

- 3 -

•Silicon and system
integration

•Bring everything – storage,
memory, interconnect –
closer to the cores

•Raise center of gravity of
memory pyramid, and make
it fatter

–Enable faster and more
efficient data movement

–Scientific Big Data: Addressing
Volume, Velocity

SSD vs HDD

• Spinning disk has mechanical limitation in

how fast data can be read from the disk
– SSDs do not have the physical drive

components so will always read faster

– Problem exacerbated for small/random reads

– But for large files striped over many disks e.g.

via Lustre, HDD still performs well.

• But SSDs are expensive!

• SSDs have limited RWs – the memory cells will wear

out over time
– This is a real concern for a data-intensive computing center

like NERSC.
- 4 -

Why an SSD Burst Buffer?

• Motivation: Handle spikes in I/O bandwidth
requirements
– Reduce overall application run time
– Compute resources are idle during I/O bursts

• Some user applications have challenging I/O
patterns
– High IOPs, random reads, different concurrency…

• Cost rationale: Disk-based PFS bandwidth is
expensive

– Disk capacity is relatively cheap
– SSD bandwidth is relatively cheap

=>Separate bandwidth and spinning disk
• Provide high BW without wasting PFS capacity
• Leverage Cray Aries network speed

- 5 -- 5 -

Why an SSD Burst Buffer?

• Motivation: Handle spikes in I/O bandwidth
requirements
– Reduce overall application run time
– Compute resources are idle during I/O bursts

• Some user applications have challenging I/O
patterns
– High IOPs, random reads, different concurrency…

• Cost rationale: Disk-based PFS bandwidth is
expensive

– Disk capacity is relatively cheap
– SSD bandwidth is relatively cheap

=>Separate bandwidth and spinning disk
• Provide high BW without wasting PFS capacity
• Leverage Cray Aries network speed

- 6 -- 6 -- 6 -

Why an SSD Burst Buffer?

• Motivation: Handle spikes in I/O bandwidth
requirements
– Reduce overall application run time
– Compute resources are idle during I/O bursts

• Some user applications have challenging I/O patterns
– High IOPs, random reads, different concurrency… perfect for

SSDs

• Cost rationale: Disk-based PFS bandwidth is expensive
– Disk capacity is relatively cheap
– SSD bandwidth is relatively cheap

=>Separate bandwidth and spinning disk
• Provide high BW without wasting PFS capacity
• Leverage Cray Aries network speed

- 7 -- 7 -

- 8 -

• NERSC at LBL, production HPC center for DoE
– >6000 diverse users across all DoE science domains

• Cori – NERSCs Newest Supercomputer – Cray XC40
– 2,388 Intel Haswell dual 16-core nodes
– 9,688 Intel Knights Landing Xeon Phi nodes, 68 cores

• Cray Aries high-speed “dragonfly” topology
interconnect

• Lustre Filesystem: 27 PB ; 248 OSTs; 700 GB/s peak
performance

• 1.8PB of Burst Buffer

Cori @ NERSC

Burst Buffer Architecture

- 9 -

• DataWarp software (integrated with SLURM WLM) allocates
portions of available storage to users per-job (or ‘persistent’).

• Users see a POSIX filesystem
• Filesystem can be striped across multiple BB nodes (depending

on allocation size requested)

Compute Nodes

Aries High-Speed Network

Blade = 2x Burst Buffer Node: 4 Intel P3608 3.2 TB SSDs

I/O Node (2x InfiniBand HCA)

InfiniBand Fabric

Lustre OSSs/OSTs

St
o

ra
ge

 F
ab

ri
c

(I
n

fi
n

iB
an

d
)

Storage Servers

CN

CN CN

CN

BB SSD
SSD

ION IB
IB

- 10 -

• DataWarp software (integrated with SLURM WLM) allocates
portions of available storage to users per-job (or ‘persistent’).

• Users see a POSIX filesystem
• Filesystem can be striped across multiple BB nodes (depending

on allocation size requested)

Compute Nodes

Aries High-Speed Network

Blade = 2x Burst Buffer Node: 4 Intel P3608 3.2 TB SSDs

I/O Node (2x InfiniBand HCA)

InfiniBand Fabric

Lustre OSSs/OSTs

St
o

ra
ge

 F
ab

ri
c

(I
n

fi
n

iB
an

d
)

Storage Servers

CN

CN CN

CN

BB SSD
SSD

ION IB
IB

- 10 -- 10 -

compute nodes

BB blade

LNET/DVS
IO nodes

service nodes

Burst Buffer Architecture

Aries

Xeon
E5 v1

Xeon
E5 v1

PCIe Gen3 8x

PCIe Gen3 8x

PCIe Gen3 8x

PCIe Gen3 8x

3.2 TB Intel P3608 SSD

3.2 TB Intel P3608 SSD

3.2 TB Intel P3608 SSD

3.2 TB Intel P3608 SSD

Burst Buffer Blade = 2xNodes

- 11 -

To
 H

SN

- 11 -

Aries

Xeon
E5 v1

Xeon
E5 v1

PCIe Gen3 8x

PCIe Gen3 8x

PCIe Gen3 8x

PCIe Gen3 8x

3.2 TB Intel P3608 SSD

3.2 TB Intel P3608 SSD

3.2 TB Intel P3608 SSD

3.2 TB Intel P3608 SSD

Burst Buffer Blade = 2xNodes

- 12 -

To
 H

SN

- 12 -

● ~1.8PiB of SSDs over 288 nodes
● Accessible from both HSW and KNL nodes

- 13 -

Why not node-local SSDs?

•Average >1000 jobs running on Cori at any time

•Diverse workload
–Many NERSC users are IO-bound

–Small-scale compute jobs, large-scale IO needs

•Persistent BB reservations enable medium-term
data access without tying up compute nodes

–Multi-stage workflows with differing concurrencies can
simultaneously access files on BB.

•Easier to stream data directly into BB from
external experiment

•Configurable BB makes sense for our user load

- 14 -

DataWarp: Under the hood

•Workload Manager (Slurm)
schedules job in the queue on
Cori

•DataWarp Service (DWS)
configures DW space and
compute node access to DW

•DataWarp Filesystem handles
stage interactions with PFS
(Parallel File System, i.e. scratch)

•Compute nodes access DW via a
mount point

Two kinds of DataWarp Instances

- 15 -

•“Instance”: an allocation on the BB

•Can it be shared? What is its lifetime?
–Per-Job Instance

•Can only be used by job that creates it

•Lifetime is the same as the creating job

•Use cases: PFS staging, application scratch, checkpoints

–Persistent Instance
•Can be used by any job (subject to UNIX file permissions)

•Lifetime is controlled by creator

•Use cases: Shared data, PFS staging, Coupled job workflow

•NOT for long-term storage of data!

Two DataWarp Access Modes

- 16 -

•Striped (“Shared”)
–Files are striped across all DataWarp nodes

–Files are visible to all compute nodes
Aggregates both capacity and BW per file

–One DataWarp node elected as the metadata
server (MDS)

•Private
–Files are assigned to one or more DataWarp

node (can chose to stripe)

–File are visible to only the compute node that
created them

–Each DataWarp node is an MDS for one or
more compute nodes

BB_1 BB_2 BB_3

CN
_1

CN_
2

CN_
3

BB_1

CN
_1

CN_
2

CN_
3

Striping, granularity and pools

• DataWarp nodes are configured to have “granularity”
– Minimum amount of data that will land on one node

• Two “pools” of DataWarp nodes, with different
granularity

– wlm_pool (default): 82GiB
• #DW jobdw capacity=1000GB access_mode=striped type=scratch

pool=wlm_pool

– sm_pool: 20.14 GiB
• #DW jobdw capacity=1000GB access_mode=striped type=scratch

pool=sm_pool

• For example, 1.2TiB will be striped over 15 BB nodes
in wlm_pool, but over 60 BB nodes in sm_pool

– No guarantee that allocation will be spread evenly over SSDs
- may see >1 “grain” on a single node

I/O PFS ↔ BB

● Each DataWarp node separately manages all PFS I/O

for the files or stripes it contains

○ Striped: each DW node has a stripe of a file, multiple PFS

clients per file

○ Private: if not “private, striped”, each DW node has an

entire file, one PFS client per node

● So I/O to PFS from DW is automatically done in

parallel

○ Note that at present, can only access PFS (i.e. $CSCRATCH)

from BB

● Compute nodes are not involved with this PFS I/O
- 18 -

Cori's Data Paths

When submitting job, request:
• capacity (GiB or TiB)
• files to stage in before job

starts
• files to stage out after job

finishes

- 19 -

Compute Nodes IO Nodes Storage Servers

Burst Buffer Nodes

Slides from Glenn Lockwood, NERSC

Cori's Data Paths

- 20 -

Compute Nodes IO Nodes Storage Servers

Burst Buffer Nodes

Before job start:

• Create private parallel file
system (DWFS) across parts
of multiple BB nodes

• Pre-load user data into this
DWFS

Slides from Glenn Lockwood, NERSC

Compute Nodes IO Nodes Storage Servers

At job runtime:
• Compute nodes mount

DWFS created for job
• User application interacts

with DWFS via standard
POSIX I/O

DVS

Burst Buffer Nodes

Cori's Data Paths

- 21 -
Slides from Glenn Lockwood, NERSC

Cori's Data Paths

- 22 -

Compute Nodes IO Nodes Storage Servers

Double-copy data path

• e.g., if cp is issued from
a compute node

• Bad data path…except
when #CN >> #BBNs

Burst Buffer Nodes

Slides from Glenn Lockwood, NERSC

- 23 -

How to use DataWarp

•Principal user access: SLURM Job script directives: #DW
–Allocate job or persistent DataWarp space

–Stage files or directories in from PFS to DW; out DW to PFS

–Access BB mount point via $DW_JOB_STRIPED,
$DW_JOB_PRIVATE, $DW_PERSISTENT_STRIPED_name

•We’ll go through this in more detail later….

•User library API – libdatawarp
–Allows direct control of staging files asynchronously

–C library interface
–https://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch

-scripts/#toc-anchor-8

–https://github.com/NERSC/BB-unit-tests/tree/master/datawarpAPI

https://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/#toc-anchor-8
https://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/#toc-anchor-8
https://github.com/NERSC/BB-unit-tests/tree/master/datawarpAPI

Benchmark Performance on Cori

• Burst Buffer is now doing very well against
benchmark performance targets

– Out-performs Lustre significantly
– (probably the) fastest IO system in the world!

IOR Posix FPP IOR MPIO Shared File IOPS

Read Write Read Write Read Write

Best Measured (287 Burst
Buffer Nodes : 11120 Compute
Nodes; 4 ranks/node)* 1.7 TB/s 1.6 TB/s 1.3 TB/s 1.4 TB/s 28M 13M

*Bandwidth tests: 8 GB block-size 1MB transfers IOPS tests: 1M blocks 4k transfer

- 24 -

Burst Buffer enables Workflow
coupling and visualization

• Success story: Burst Buffer can enable new
workflows that were difficult to orchestrate using
Lustre alone.

- 25 -

Workflows Use Case: ChomboCrunch +
VisIT

•ChomboCrunch simulates pore-scale
reactive transport processes associated with
carbon sequestration

–Flow of liquids through ground layers
–All MPI ranks write to single shared HDF5 ‘.plt’
file.
–Higher resolution -> more accurate simulation ->
more data output (O(100TB))

• VisIT – visualisation and analysis tool for scientific
data
– Reads ‘.plt’ files produces ‘.png’ for encoding into movie

• Before: used Lustre to store intermediate files.
- 26 -

• Burst Buffer
significantly
out-performs Lustre
for this application
at all resolution
levels
– Did not require any

additional tuning!

• Bandwidth achieved
is around a quarter
of peak, scales well.

Compute node/BB node scaled: 16/1 to
1024/ 64
Lustre results used a 1MB stripe size and a
stripe count of 72 OSTs

- 27 -

Workflows Use Case: ChomboCrunch +
VisIT

Success story: ATLAS

• IOPS-heavy Data analysis
– Random reads from large numbers of data files
– Used 50TB of BB space
– ~9x faster I/O compared to Scratch.

Vakho Tsulaia, Steve Farrell, Wahid Bhimji
- 28 -

Success story: JGI

• Metagenome assembly
algorithm metaSPAdes
– Lots of small, random

reads.
– I/O is a significant

bottleneck.

Alicia Clum

Cori Scratch
w/ stripe tuning

Burst Buffer
w/ no tuning

R
un

 ti
m

e
(h

rs
)

• Using the Burst Buffer gains factor of 2 in I/O
performance out of the box, compared to heavily
tuned Lustre.

• Users not part of the early user program!

- 29 -

Detailed look at high IOPs: SQLite

• A library which implements an SQL database

engine

• No separate server process like there is in other

database engines, e.g. MySQL, PostgreSQL, Oracle

• Database is stored in a single cross-platform file

• Installed on many supercomputers

• “SQLite does not compete with client/server

databases. SQLite competes with fopen()”

(https://sqlite.org/whentouse.html)

- 30 - Chris Daley, NERSC

SQLite benchmark

• Inserts 2500 records into an SQLite

database

• Written in C and optionally

parallelized with MPI
– In parallel runs each MPI rank writes

2500 records to its own uniquely

named database file

• Anatomy of insert transaction:
– Dozens of I/O system calls are

required for each SQLite transaction
- 31 -

System call Count

fdatasync 4

read 2

write 10

lseek 12

fcntl 9

open 2

close 2

unlink 1

fstat 5

stat 2

access 2

Many I/O ops for 1 DB insert!

- 32 - Chris Daley, NERSC

~50x faster on the BB!

• Benchmark run

with 1 MPI rank

• Scratch

configuration uses

1 OST

• Burst Buffer

configuration uses

1 granule of storage

Chris Daley, NERSC- 33 -

Frequent synchs perform badly on
Lustre

• 98% of wall time!

• 1 synchronization

every 2.5 writes gives

no opportunity for

the kernel to buffer

the writes

- 34 - Chris Daley, NERSC

• The data transfer is limited by the write latency of

spinning disk

MD performance scales well in
private mode

• Private mode

enables scalable

metadata

performance as we

add compute nodes
– 1 metadata server

per compute node

- 35 - Chris Daley, NERSC

(All runs use 64 BB granules)

MD in IOR benchmark

• Single-stream IOR with

a data synchronization

after every POSIX write

(-Y flag)

• Average write latency

< 1 millisecond on BB
– two orders of

magnitude faster than

disk!

- 36 - Chris Daley, NERSC

Challenging IO use case: Astronomy data

•Selecting subsets of galaxy
spectra from a large dataset

–Small, random memory accesses

–Typical web query for SDSS dataset

- 37 -

Jialin Liu and Debbie Bard

Time taken to
extract 1000
random spectra

From one
hdf5 file

From individual
fits files

From Lustre 44.1s 160.3s
From BB 1.3s 44.0s
Speedup: 33x 3.6x

Summary

• NERSC has the first Burst Buffer for open science in

the USA

• Users are able to take advantage of SSD performance
– Some tuning may be required to maximise performance

• Many bugs now worked through
– But care is needed when using this new technology!

• User experience today is generally good

• Performance for metadata-intensive operations is

particularly excellent

- 38 -

Extra slides

- 39 -

Performance tips

• Stripe your files across multiple BB servers
– To obtain good scaling, need to drive IO with sufficient

compute - scale up # BB nodes with # compute nodes

Resources

•NERSC Burst Buffer Web Pages

http://www.nersc.gov/users/computational-systems
/cori/burst-buffer/

•Example batch scripts

http://www.nersc.gov/users/computational-systems
/cori/burst-buffer/example-batch-scripts/

•Burst Buffer Early User Program Paper

http://www.nersc.gov/assets/Uploads/Nersc-BB-EU
P-CUG.pdf

- 41 -

http://www.nersc.gov/users/computational-systems/cori/burst-buffer/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/
http://www.nersc.gov/assets/Uploads/Nersc-BB-EUP-CUG.pdf
http://www.nersc.gov/assets/Uploads/Nersc-BB-EUP-CUG.pdf

SSD write protection

42

•SSDs support a set amount of write activity before
they wear out

•Runaway application processes may write an excessive
amount of data, and therefore, “destroy” the SSDs

•Three write protection policies
–Maximum number of bytes written in a period of time

–Maximum size of a file in a namespace

–Maximum number of files allowed to be created in a
namespace

•Log, error, log and error
–-EROFS (write window exceeded)

–-EMFILE (maximum files created exceeded)

–-EFBIG (maximum file size exceeded)

Cori's Data Paths

- 43 -

Compute Nodes IO Nodes Storage Servers

After job completes:

• Copy user data back to
Lustre

• Destroy DWFS associated
with job

Burst Buffer Nodes

Slides from Glenn Lockwood, NERSC

DataWarp File System (DWFS)

• File system built on Wrapfs that
glues together
– Cray DVS for client-server RPCs
– many XFS file systems for data

(called "fragments")
– one XFS file system for metadata

• Conceptually very simple
– No DLM

• rely on server-side VFS file locking
• no client-side page cache (yet)

– Data placement determined by
deterministic hash of inode, offset

– Stubbed XFS file system encodes
most file metadata

- 44 -

DWFS

XFS FS
(data)

XFS FS
(data)

XFS FS
(data)

XFS FS
(metadata)

DVS client DVS client

DVS client

Slides from Glenn Lockwood, NERSC

Physical Node
• 1x Sandy Bridge E5, 8-core
• 64 GB DDR3
• 2x Intel P3608 (3.2 TB ea.)

Linux OS

/dev/sdb /dev/sdc /dev/sdd /dev/sde• Logically four block devices

LVM (4 MB physical extents, 128K stripes)• LVM aggregates block devices

XFS• Linux vol group and XFS fs XFS

Page cache (4K pages)
substripe substripe substripe• 3 substripes per file per BB node

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b

su
b• 8 MB sub-substripes in substripe

• 4x Intel P3600 controllers

DWFS Storage Substrate

- 45 -

c2 c38X PCIe PLXc0 c18X PCIe PLX

Slides from Glenn Lockwood, NERSC

DataWarp I/O Service (BB Node)

DataWarp Client (Compute Node)

Data Layout: Simple Case (1 BB
node)

- 46 -

XFS, e.g., /mnt/xfs0

sss0 sss1 sss2 sss3 sss4 sss5 sss6 …
DVS

128 MB file (/mnt/datawarp/kittens.gif)

DataWarp I/O service
views files as 8 MB pieces

(sub-substripes)

Slides from Glenn Lockwood, NERSC

DataWarp I/O Service (BB Node)

DataWarp Client (Compute Node)

Data Layout: Simple Case (1 BB
node)

- 47 -

XFS, e.g., /mnt/xfs0

Substripe
/mnt/xfs0/12345.0

Substripe
/mnt/xfs0/12345.1

Substripe
/mnt/xfs0/12345.2

sss0 sss1 sss2 sss3 sss4 sss5 sss6 …

sss0 sss1 sss2sss3 sss4 sss5

sss6

8 MB sub-substripes
map to 3x substripes

Slides from Glenn Lockwood, NERSC

DataWarp I/O Service (BB Node)

DataWarp Client (Compute Node)

Data Layout: Simple Case (1 BB
node)

- 48 -

XFS, e.g., /mnt/xfs0

Substripe
/mnt/xfs0/12345.0

Substripe
/mnt/xfs0/12345.1

Substripe
/mnt/xfs0/12345.2

sss0 sss1 sss2 sss3 sss4 sss5 sss6 …

sss0 sss1 sss2sss3 sss4 sss5

sss6

Substripes can be read/written in parallel

Sub-substripes within a substripe cannot
be written in parallel

Slides from Glenn Lockwood, NERSC

DataWarp I/O Service (BB Node)

DataWarp Client (Compute Node)

Data Layout: Simple Case (1 BB
node)

- 49 -

XFS, e.g., /mnt/xfs0

Substripe
/mnt/xfs0/12345.0

Substripe
/mnt/xfs0/12345.1

Substripe
/mnt/xfs0/12345.2

sss0 sss1 sss2 sss3 sss4 sss5 sss6 …

sss0 sss1 sss2sss3 sss4 sss5

sss6

Substripes can be read/written in parallel

Sub-substripes within a substripe cannot
be written in parallel

Slides from Glenn Lockwood, NERSC

DataWarp I/O Service (BB Node)

DataWarp Client (Compute Node)

Data Layout: Simple Case (1 BB
node)

- 50 -

XFS, e.g., /mnt/xfs0

Substripe
/mnt/xfs0/12345.0

Substripe
/mnt/xfs0/12345.1

Substripe
/mnt/xfs0/12345.2

sss0 sss1 sss2 sss3 sss4 sss5 sss6 …

sss0 sss1 sss2sss3 sss4 sss5

sss6

Substripes can be read/written in parallel

Sub-substripes within a substripe cannot
be written in parallel

Slides from Glenn Lockwood, NERSC

XFS

DataWarp Client (Compute Node)

Data Layout: 2 BB nodes

- 51 -

128 MB file (/mnt/datawarp/kittens.gif)

substripe0

0 6
1
2

1
8

substripe1

2 8
1
4

substripe2

4
1
0

1
6

XFS

substripe0

1 7
1
3

1
9

substripe1

3 9
1
5

substripe2

5
1
1

1
7

8 MB blocks can* be sent to BB nodes in parallel via DVS

node0 node1

* under certain conditionsSlides from Glenn Lockwood, NERSC

XFS

DataWarp Client (Compute Node)

Data Layout: 2 BB nodes

- 52 -

128 MB file (/mnt/datawarp/kittens.gif)

substripe0

0 6
1
2

1
8

substripe1

2 8
1
4

substripe2

4
1
0

1
6

XFS

substripe0

1 7
1
3

1
9

substripe1

3 9
1
5

substripe2

5
1
1

1
7

node0 node18 MB sub-substripes committed to disk in parallel

Slides from Glenn Lockwood, NERSC

DWFS Data Path - Client

• No page cache for
write-back

• Shared-file writes are
serialized by VFS

• DVS can parallelize very
large transactions

- 53 -

MPI proc0 MPI proc1 MPI proc2

Linux VFS

DVS driver

BB node0
BB node1

BB node2
BB node3

8 MB
RPC 8 MB

RPC 8 MB
RPC 8 MB

RPC

32MB
transaction

32MB
transaction

32MB
transaction

Slides from Glenn Lockwood, NERSC

Hierarchical Parallelism

- 54 -

file

subsubsub

stripe stripe stripe

XFS AGs
variable size
across 4 AGs

LVM PEs
4MB across 4 devices

LVM stripes
128K across 4 PEs

Substripes
8MB across

3-14 substripes

Stripes
8MB across N servers

Some performance bottlenecks:
• Clients serialize in VFS (shared

file writes)
• BB servers serialize on substripe

writes (shared file writes)
• BB server 128K LVM stripes

limit file per process writes

Slides from Glenn Lockwood, NERSC

