
Debbie Bard
Data and Analytics Services

ATPSEC 2017 IO Day

Getting your
hands on
Cori’s Burst
Buffer

- 1 -

- 2 -

Scratch allocation

• ‘type=scratch’ – duration just for compute job (i.e. not ‘persistent’)

• ‘access_mode=striped’ – visible to all compute nodes (i.e. not
‘private’) and striped across multiple BB nodes

–Actual distribution across BB Nodes is in units of (configurable)
granularity (currently 80 GB at NERSC in wlm_pool, so 1000 GB
would normally be placed on 13 BB nodes)

• Data ‘stage_in’ before job start and ‘stage_out’ after

#!/bin/bash
#SBATCH –p regular –N 10 –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=scratch
#DW stage_in source=/lustre/inputs destination=$DW_JOB_STRIPED/inputs \
type=directory
#DW stage_in source=/lustre/file.dat destination=$DW_JOB_STRIPED/ type=file
#DW stage_out source=$DW_JOB_STRIPED/outputs destination=/lustre/outputs \
type=directory
srun my.x --indir=$DW_JOB_STRIPED/inputs --infile=$DW_JOB_STRIPED/file.dat \
--outdir=$DW_JOB_STRIPED/outputs

- 3 -

#!/bin/bash
#SBATCH –p regular –N 10 –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=scratch
#DW stage_in source=/lustre/inputs destination=$DW_JOB_STRIPED/inputs \
type=directory
#DW stage_in source=/lustre/file.dat destination=$DW_JOB_STRIPED/ type=file
#DW stage_out source=$DW_JOB_STRIPED/outputs destination=/lustre/outputs \
type=directory
srun my.x --indir=$DW_JOB_STRIPED/inputs --infile=$DW_JOB_STRIPED/file.dat \
--outdir=$DW_JOB_STRIPED/outputs

• ‘type=scratch’ – duration just for compute job (i.e. not ‘persistent’)

• ‘access_mode=striped’ – visible to all compute nodes (i.e. not
‘private’) and striped across multiple BB nodes

–Actual distribution across BB Nodes is in units of (configurable)
granularity (currently 80 GB at NERSC in wlm_pool, so 1000 GB
would normally be placed on 13 BB nodes)

• Data ‘stage_in’ before job start and ‘stage_out’ after

Scratch allocation

- 4 -

#!/bin/bash
#SBATCH –p regular –N 10 –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=scratch
#DW stage_in source=/lustre/inputs destination=$DW_JOB_STRIPED/inputs \
type=directory
#DW stage_in source=/lustre/file.dat destination=$DW_JOB_STRIPED/ type=file
#DW stage_out source=$DW_JOB_STRIPED/outputs destination=/lustre/outputs \
type=directory
srun my.x --indir=$DW_JOB_STRIPED/inputs --infile=$DW_JOB_STRIPED/file.dat \
--outdir=$DW_JOB_STRIPED/outputs

• ‘type=scratch’ – duration just for compute job (i.e. not ‘persistent’)

• ‘access_mode=striped’ – visible to all compute nodes (i.e. not
‘private’) and striped across multiple BB nodes

–Actual distribution across BB Nodes is in units of (configurable)
granularity (currently 80 GB at NERSC in wlm_pool, so 1000 GB
would normally be placed on 13 BB nodes)

• Data ‘stage_in’ before job start and ‘stage_out’ after

Scratch allocation

- 5 -

#!/bin/bash
#SBATCH –p regular –N 10 –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=scratch
#DW stage_in source=/lustre/inputs destination=$DW_JOB_STRIPED/inputs \
type=directory
#DW stage_in source=/lustre/file.dat destination=$DW_JOB_STRIPED/ type=file
#DW stage_out source=$DW_JOB_STRIPED/outputs destination=/lustre/outputs \
type=directory
srun my.x --indir=$DW_JOB_STRIPED/inputs --infile=$DW_JOB_STRIPED/file.dat \
--outdir=$DW_JOB_STRIPED/outputs

• ‘type=scratch’ – duration just for compute job (i.e. not ‘persistent’)

• ‘access_mode=striped’ – visible to all compute nodes (i.e. not
‘private’) and striped across multiple BB nodes

–Actual distribution across BB Nodes is in units of (configurable)
granularity (currently 80 GB at NERSC in wlm_pool, so 1000 GB
would normally be placed on 13 BB nodes)

• Data ‘stage_in’ before job start and ‘stage_out’ after

Scratch allocation

Step 1: log onto Cori

• We have temporary user accounts for NERSC (that
will expire at the end of the day) and a reservation of
Haswell nodes on Cori.

• Using your training account (or your own NERSC
account): ssh username@cori.nersc.gov
– Note that if you use your own NERSC account you won’t be

part of our compute reservation but you can still submit
jobs that run on the Burst Buffer.

mailto:username@cori.nersc.gov

Copy over the example scripts
and test data

• Pull down the example scripts and the test data file
onto your scratch space
– We’re using scratch (i.e. Lustre) because it’s currently the

only filesystem the burst buffer can access on Cori.

cd $SCRATCH

git clone https://github.com/NERSC/train.git

cd train/atpesc-IO-day/IntroToBB/

mkdir data

cp /global/cscratch1/sd/djbard/test1Gb.db data/

https://github.com/NERSC/train.git

Run the first simple script!

• Go to the directory
train/atpesc-IO-day/Int

roToBB/examples and
look at the
example script
“scratch.sh”:

• Note: on this slide the wrong
reservation name is given - but
should be correct in the github
scripts. Use:
– #SBATCH -C haswell
– #SBATCH

--reservation=”atpesctrain”

“atpesctrain”

haswell

Run the first simple script!

• Submit the job using “sbatch scratch.sh”
• User “sqs” and “squeue” to view the status of

your job

Run the first simple script!

• Submit the job using “sbatch scratch.sh”
• User “sqs” and “squeue” to view the status of

your job

View Burst Buffer status

• User “scontrol show burst” to look at what the
Burst Buffer is doing right now

Stage in data to a scratch allocation

• Look at “stage_in.sh”.
• Edit it to point to your

OWN file/directory that
you want to stage_in

• Submit the job
• Check the output log file -

did the directory stage in as
expected?

“atpesctrain”

haswell

Stage out data from a scratch
allocation

• Look at “stage_out.sh”.
• Edit it to point to your OWN

scratch directory
• Submit the job
• Check your scratch directory - did

“hello.txt” stage out as expected?

“atpesctrain”

haswell

14

•Using a persistent DataWarp instance
–Lifetime different from the batch job

–Usable by any batch job (posix permissions permitting)

–name=xyz: Name of persistent instance to use

C

Persistent reservations

 Use in another job Delete

15

•Using a persistent DataWarp instance
–Lifetime different from the batch job

–Usable by any batch job (posix permissions permitting)

–name=xyz: Name of persistent instance to use

C

 Use in another job Delete

Persistent reservations

16

•Using a persistent DataWarp instance
–Lifetime different from the batch job

–Usable by any batch job (posix permissions permitting)

–name=xyz: Name of persistent instance to use

C

 Use in another job Delete

Persistent reservations

17

•Using a persistent DataWarp instance
–Lifetime different from the batch job

–Usable by any batch job (posix permissions permitting)

–name=xyz: Name of persistent instance to use

C

 Use in another job Delete

Persistent reservations

Create a persistent reservation

• Look at
“create_persistent.
sh”

• Edit it to rename
the persistent
reservation!

• Submit it, then use
“scontrol show
burst” to check it’s
been created.

“atpesctrain”

haswell

Use a persistent reservation

• Look at “use_persistent.sh”
• Change:

– The PR name,
– The stage_in path
– The variable

$DW_PERSISTENT_STRIPED_name

“atpesctrain”

haswell

Destroy a persistent reservation

• Look at “destroy_persistent.sh”
• Change the name to your own PR name.
• Submit it, then use “scontrol show burst” to check

it’s been destroyed.
– If you get the name wrong, you’ll get NO error messages.

“atpesctrain”

haswell

Using the Burst Buffer interactively

• Look at “interactive_scratch.conf”:

• Request an interactive session using “salloc”:
salloc -N 1 -t 5 -C haswell --reservation="atpesctrain"
--bbf=”interactive_scratch.conf”

salloc -N 1 -t 5 -C knl --qos=interactive
--bbf=”interactive_scratch.conf”

• Play around with the BB interactively!
– Try running IOR using the executable in your examples

directory:
srun -n 8 ./IOR -a MPIIO -g -t 10MiB -b 100MiB -o

$DW_JOB_STRIPED/IOR_file

• Also “interactive_persistent.conf” for a PR.

Using the Burst Buffer interactively

• Look at “interactive_scratch.conf”:

• Request an interactive session using “salloc”:

• Play around with the BB interactively!
– Try running IOR using the executable in your examples

directory:
• ./IOR -a MPIIO -g -t 20MiB -b 100MiB -o

$DW_JOB_STRIPED/IOR_file

Using dwstat

• Dwstat is a useful tool
to learn exactly what’s
going on with the BB
allocations.
– Only accessible from

compute nodes.

• Look at “dwstat.sh”
for how to find what
DW nodes *your* BB
allocation is striped
over.

“atpesctrain”

haswell

Running IOR on the BB

• Take a look at “run_IOR.sh”
– This script sets all the options to run IOR. You can edit

it to run on a scratch BB allocation, or on scratch, or in
your home directory.

“atpesctrain”

Running IOR on the BB

• Take a look at “run_IOR.sh”.

