Data Models and Libraries: Application-oriented I/O

Presented to

ATPESC 2017 Participants

Rob Latham Phil Carns
Math and Computer Science Division

Argonne National Laboratory

Q Center, St. Charles, IL (USA)
Date 08/04/2017

cCP

eEXASCALE COMPUTING PROJECT

N 'S,o“i %\ U.S. DEPARTMENT OF Offlce Of A
National NWASEW,WMW-,,,-;;?M E N E RGY Science rgo n n e 3

NATIONAL LABORATORY

TN
)

o sy B

¢ ' 5
& S
ST

Reminder: HPC I/O Software Stack

The software used to provide data model support and to
transform 1/O to better perform on today’s I/O systems is often
referred to as the I/O stack.

I/O Middleware organizes accesses from

Data Model Libraries map application Application many processes, especially those using
abstractions onto storage abstractions and collective
provide data portability. 4‘ Data Model Support I/0.
HDF5, Parallel netCDF, ADIOS MPI-10, GLEAN, PLFS
Transformations I/O Forwarding transforms 1/O from many

clients into fewer, larger request; reduces
Parallel file system maintains logical file lock contention; and bridges between the
model and provides efficient access to data;‘ Parallel Eile System HPC system and external storage.
PVFS, PanFS, GPFS, Lustre IBM ciod, IOFSL, Cray DVS

I/O Hardware

—

Argonne & E(C)P s

2 NATIONAL LABORATORY

2 ATPESC 2017, July 30 — August 11, 2017

Data Model Libraries

 Scientific applications work with structured data and desire more self-
describing file formats

* PnetCDF and HDF5 are two popular “higher level” I/O libraries
— Abstract away details of file layout
— Provide standard, portable file formats
— Include metadata describing contents

 For parallel machines, these use MPI and probably MPI-10

— MPI-10 implementations are sometimes poor on specific platforms, in which
case libraries might directly call POSIX calls instead

—

"ﬁ \
\ J EXASCALE
) COMPUTING

PROJECT

Argonne &

3 ATPESC 2017, July 30 — August 11, 2017 \(
3 NATIONAL LABORATORY

How It Works: The Parallel netCDF Interface and File
Format

Thanks to Wei-Keng Liao, Alok Choudhary, and Kui
Gao (NWU) for their help in the development of
PnetCDF.

www.mcs.anl.gov/parallel-netcdf

_—— \
EEEEEEEE
Argonne (CP ===
4 ATPESC 2017, July 30 — August 11, 2017 \\ PPPPPPP
NATIONAL LABORATORY g

http://www.mcs.anl.gov/parallel-netcdf
http://www.mcs.anl.gov/parallel-netcdf
http://www.mcs.anl.gov/parallel-netcdf

Parallel NetCDF (PnetCDF)

« Based on original “Network Common Data Format” (netCDF) work from Unidata

— Derived from their source code

« Data Model:
— Collection of variables in single file
— Typed, multidimensional array variables
— Attributes on file and variables

* Features:
— C, Fortran, and F90 interfaces
— Portable data format (identical to netCDF)
— Noncontiguous I/O in memory using MPI datatypes
— Noncontiguous /O in file using sub-arrays
— Collective 1/0
— Non-blocking I/O

e Unrelated to netCDF-4 work
« Parallel-NetCDF tutorial:

— http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial

5 ATPESC 2017, July 30 — August 11, 2017

Argonne &

NATIONAL LABORATORY

’ ~

=\
\)

I_)

EXASCALE
COMPUTING
PROJECT

http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial
http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial
http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial

Parallel netCDF (PnetCDF) Cluster

PnetCDF

* (Serial) netCDF

— API for accessing multi-dimensional data sets ROMIO

— Portable file format

— Popular in both fusion and climate communities Lustre
IBM Blue Gene
 Parallel netCDF

— Very similar API to netCDF PetcbF

— Tuned for better performance in today’s computing IBM MPI
environments

— Retains the file format so netCDF and PnetCDF ciod
applications can share files

— PnetCDF builds on top of any MPI-10 implementation GPFS

’ ~

—_—
\\ J EXASCALE
) COMPUTING

PROJECT

Argonne &

6 ATPESC 2017, July 30 — August 11, 2017 \(
6 NATIONAL LABORATORY

netCDF Data Model

The netCDF model provides a means for storing multiple,

multi-dimensional arrays in a single file.

Application Data Structures

Double temp

Coofonaiono

26[
%024

Float surface_pressure

512
—

12

7 ATPESC 2017, July 30 — August 11, 2017

SIFRUEESTS

netCDF File "checkpoint07.nc"

Variable "temp" {
type = NC_DOUBLE,
dims = {1024, 1024, 26},
start offset = 65536,
attributes = {"Units" = "K"}}

Variable "surface_pressure" {
type = NC_FLOAT,
dims = {512, 512},
start offset = 218103808,
attributes = {"Units" = "Pa"}}

< Data for "temp" >

< Data for "surface_pressure" >

/_N/

Argonne @ E£(CP

netCDF header describes
the contents of the file:
typed, multi-dimensional
variables and attributes

on variables or the dataset
itself.

Data for variables is stored
in contiguous blocks,
encoded in a portable binary
format according to the
variable's type.

—

7 NATIONAL LABORATORY

EXASCALE
COMPUTING
PROJECT

Record Variables in netCDF

* Record variables are defined to have a single netCDF Header
“unlimited” dimension

— Convenient when a dimension size is unknown at time of
variable creation

15t non-—record variable

2nd non-record variable

3%

L
Y
Vi

* Record variables are stored after all the other
variables In an interleaved format
1zt Eecord for 1=t Record ¥ar

— Using more than one in a file is likely to result in poor Tst Record for 2nd Record Var
performance due to number of noncontiguous accesses =

1zt Record for rth Record ¥ar

nth non-record variable

Fixed—sized data

r""n.
L

%

2nd Record for 1st,
2nd, ..., rth Record
Variables 1n order

Record Data

:E’____&_____m-

REecords grow in the URLINITED
. dimen=sion for 1,2,..., rth war

Argonne & £

NATIONAL LABORATORY

"‘ \
\ J EXASCALE
) COMPUTING

PROJECT

8 ATPESC 2017, July 30 — August 11, 2017

Pre-declaring 1/O

 netCDF / Parallel-NetCDF: bimodal write interface

— Define mode: “here are my dimensions, variables, and attributes”
— Data mode: “now I'm writing out those values”

« Decoupling of description and execution shows up several places
— MPI non-blocking communication
— Parallel-NetCDF “write combining” (talk more in a few slides)
— MPI datatypes to a collective routines (if you squint really hard)

—

Argonne & E(C)P s

NATIONAL LABORATORY

9 ATPESC 2017, July 30 — August 11, 2017

Inside PnetCDF Define Mode

* In define mode (collective)
— Use MPI_F1ile_open to create file at create time
— Set hints as appropriate (more later)
— Locally cache header information in memory

« All changes are made to local copies at each process

« At ncmpi_enddef
— Process 0 writes header with MPI_File_write_at
— MPI_Bcast result to others
— Everyone has header data in memory, understands placement of all variables

—

"" \
\ J EXASCALE
) COMPUTING

PROJECT

10 ATPESC 2017, July 30 — August 11, 2017

Argonne &

10 NATIONAL LABORATORY \

Inside PnetCDF Data Mode

M Inside ncmpi_put_vara_all (once per variable)

— Each process performs data conversion into internal buffer
— Uses MPI_File_set_view to define file region

« Contiguous region for each process in FLASH case
— MPI_File_write_all collectively writes data

B At ncmpi_close
— MPI_File_close ensures data is written to storage

B MPI-10 performs optimizations
— Two-phase possibly applied when writing variables

B MPI-10 makes PFS calls
— PFS client code communicates with servers and stores data

—

Argonne & E(C)P s

11 NATIONAL LABORATORY

11 ATPESC 2017, July 30 — August 11, 2017

Inside Parallel netCDF: TIME-line view

1: Rank O write header
(independent I/O)
1

Azx. Depth q

3: Collectively
write 4 variables
|

m Leve

lllllllllllll

Miew InitTime Zoom Focus Time Wiew Final Time

5|

Zon
[

|
3

v s a][els [<[r]na][r[a]a] @86 22

|5.95916EIIU§5 5.6226678796 |B.E0BSED10SA

ek ¥ |

1

EDDDDD

/O
Aggr

NI K

2: Collectively write
app grid, AMR data

12 ATPESC 2017, July 30 — August 11, 2017

4: Close file

12

Argonne &

NATIONAL LABORATORY

File open

Indep. write

- Collective write

File close

’ ~

—_—
\\ J EXASCALE
) COMPUTING
PROJECT

Parallel-NetCDF write-combining optimization

ncmpi iput vara(ncfile, wvaridl,

&start, &count,
count, MPI INT,

requests, statuses);

&data,
&requests[0]) ;

ncmpi wait all(ncfile, 2,

* netCDF variables laid out contiguously

« Applications typically store data in
separate variables

HEADER VAR1

13 ATPESC 2017, July 30 — August 11, 2017

— temperature(lat, long, elevation)
VAR?2 — Velocity x(x, y, z, timestep)

« Operations posted independently,
completed collectively
— Defer, coalesce synchronization
— Increase average request size

’;\\\ EXASCALE

) —] COMPUTING
PROJECT

Argonne &

13 NATIONAL LABORATORY \\—'

PnetCDF Life Checkpoint/Restart Code Walkthrough

« Stores matrix as a two-dimensional array of integers
— Same canonical ordering as in MPI-10 version

* [teration number stored as an attribute
* Note: A naive reader will know how to read this

integer iter integer “matrix” [rows][cols]
lteration PO
P1
P2
P3
Global Matrix

—

Argonne & E(C)P s

NATIONAL LABORATORY

14 ATPESC 2017, July 30 — August 11, 2017

14

File: mlife-io-pnetcdf.c

O O ~Joy Ul E

/* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */
/* —*— Mode: C; c-basic-offset:4 ; —-*- */

/*
* (C) 2004 by University of Chicago.

* See COPYRIGHT in top-level directory.
*/

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#include <pnetcdf.h>
#include "mlife-io.h"

/* Parallel netCDF implementation of checkpoint and restart for
* MPI Life

*

* Data stored in a 2D variable called "matrix" in matrix order,
* with dimensions "row" and "col".

*

* Each checkpoint is stored in its own file.
*/
static MPI Comm mlifeio comm = MPI COMM NULL;

int MLIFEIO Init (MPI Comm comm)

{
int err;
err = MPI Comm dup (comm, &mlifeio comm) ;
return erE; N N

Page 1 of 7

15

File: mlife-io-pnetcdf.c

30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
47 :
42
43:
44 .

/* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */
int MLIFEIO Finalize (void)

{
int err;

err = MPI Comm free(&mlifeio comm);

return err;

int MLIFEIO Can restart (void)

return 1;

Page 2 of 7

16

File: mlife-io-pnetcdf.c Page 3 of 7

45: /* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */
46: int MLIFEIO Checkpoint (char *prefix, int **matrix, int rows,

477 2 int cols, int iter, MPI Info info)
48: |

49: int err;

50: int cmode = 0;

51: int rank, nprocs;

52: int myrows, myoffset;

53:

54: int ncid, wvarid, coldim, rowdim, dims|[2];

55: MPI Offset start([2];

56: MPI Offset count[2];

57: int 1, 7j, *buf;

58: char filename([64];

59:

60 : MPI Comm size (mlifeio comm, &nprocs);

61: MPI Comm rank(mlifeio comm, &rank);

62:

63: myrows = MLIFE myrows (rows, rank, nprocs);

64 : myoffset = MLIFE myrowoffset (rows, rank, nprocs);

65:

66: snprintf (filename, 63, , prefix, iter);

67:

68: err = ncmpl create (mlifeio>comm, filename, cmode, info, &ncid);
69: if (ex '=0) |

70: fprintf (stderr, , filename);
71: return MPI ERR IO;

72 }
73:

Describing Subarray Access in PnetCDF

* PnetCDF provides calls for reading/writing subarrays in a single (collective) call:
ncmpi put vara all (ncid,

start[], count]],

datatype)
/ \
N
Y
P1
Local Sub-matrix in
memory
Globgl Matrix in PnetCDRFile ":"\\\ e e
r nne () —) COMPUTING
18 ATPESC 2017, July 30 — August 11, 2017 \ FROJECT

18 NATIONAL LABORATORY

Define mode vs data mode
Can describe anything in
memory, but constrained to
multidimensional arrays in
storage

File: mlife-io-pnetcdf.c

74
75:
76:
77
78 :
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94 .
95:
96:
97:
98:
99:
100:
101:
102:

/* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */

ncmpli def dim(ncid, , cols, &coldim) ;

ncmpi def dim(ncid, , rows, &rowdim);

dims[0] = coldim;

dims[1l] = rowdim;

ncmpi def var (ncid, , NC INT, 2, dims, &varid);

/* store iteration as global attribute */
ncmpli put att int (ncid, NC GLOBAL, , NC INT, 1, &iter);

ncmpl enddef (ncid);

start[0] = 0; /* col start */
start[1l] = myoffset; /* row start */
count [0] = cols;

count[l] = myrows;

MLIFEIO Type create rowblk(matrix, myrows, cols, &type);
MPI Type commit (&type) ;

ncmpi_put_varaﬁb EE Ilm:id, start, count, MPI BOTTOM, 1,

MPI Type free (&type);

ncmpl close(ncid) ;
return MPI SUCCESS;

Page 4 of 7/

19

File:

103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:

mlife-io-pnetcdf.c Page 5 of 7

/* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */
int MLIFEIO Restart (char *prefix, int **matrix, int rows,

{

int cols, int iter, MPI Info info)

int err = MPI SUCCESS;
int rank, nprocs;

int myrows, myoffset;
int flag;

int cmode = 0;

int ncid, wvarid, dims([2];

MPI Offset start([2];

MPI Offset count[2];

MPI Offset coldimsz, rowdimsz;
int 1, 7j, *buf;

char filename([64];

MPI Comm size(mlifeio comm, &nprocs);
MPI Comm rank(mlifeio comm, &rank);

myrows = MLIFE myrows (rows, rank, nprocs);
myoffset = MLIFE myrowoffset (rows, rank, nprocs);

snpzri ' Tam 03, , prefix, iter);

erx ncmpli open (mlifeio comm, filename, cmode, info, é&ncid);
(e L=
fprintf (stderr, , filename) ;
return MPI_ERR IO;

20

Discovering Variable Dimensions

* Because netCDF is self-describing, applications can inquire about
data in netCDF files:

err = ncmpl ing dimlen (ncid,
dims[0],

&coldimsz) ;

* Allows us to discover the dimensions of our matrix at restart time

—

Argonne & E(C)P s

21 NATIONAL LABORATORY

21 ATPESC 2017, July 30 — August 11, 2017

File:

132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:

mlife-io-pnetcdf.c

Page 6 of 7

/* SLIDE: Discovering Variable Dimensions */

err = ncmpl ing varid(ncid,
if (err != 0) {

return MPI ERR IO;
}

&varid) ;

/* verify that dimensions in file are same as input row/col */

err = ncmpl ing vardimid(ncid, varid,

if (err !'= 0) {
return MPI_ERR_IO;
}

err = ncmpl ing dimlen(ncid, dims[0],

if (coldimsz != cols) {
fprintf (stderr,
return MPI_ERR_IO;
}

err = ncmpl ing dimlen(ncid, dims([1],

if (rowdimsz != rows) {
fprintf (stderr,
return MPI ERR IO;

dims) ;

&coldimsz) ;

) ;

&rowdimsz) ;

) ;

22

File: mlife-io-pnetcdf.c

156:
157:
158:
159:
160:
161l:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:

/* SLIDE: Discovering Variable Dimensions */

buf = (int *) malloc(myrows * cols * sizeof (int));
flag = (buf == NULL);
/* See i1if any process failed to allocate memory */
MPI Allreduce (MPI IN PLACE, &flag, 1, MPI INT, MPI LOR,
mlifeio comm) ;
if (flag) {
return MPI ERR IO;

start[0] =0; /* col start */

start = myoffset; * row start */
count = cols;

count [= MYrows;

ncmpl get vara int all(ncid, varid, start, count, buf);

for (i=0; 1 < myrows; i++) {
for (J=0; j < cols; J++) {
matrix[i+1][j] = buf[(i*cols) + F1;
}
}

free (buf) ;

return MPI SUCCESS;

Page 7 of 7

23

Takeaway from PnetCDF Game of Life Example

* PnetCDF abstracts away the file system model, giving us something
closer to (many) domain models

— Arrays
— Types
— Attributes

« Captures metadata for us (e.g., rows, columns, types) and allows us
to programmatically explore datasets

« Uses MPI-IO underneath, takes advantage of data sieving and two-
phase I/O when possible

—

Argonne & E(C)P s

24 NATIONAL LABORATORY

24 ATPESC 2017, July 30 — August 11, 2017

Example: FLASH Astrophysics

 FLASH is an astrophysics code for
studying events such as supernovae

— Adaptive-mesh hydrodynamics
— Scales to 1000s of processors

— MPI for communication

* Frequently checkpoints:

— Large blocks of typed variables
from all processes

Vars 0,1, 2, 3, ... 23

— Portable format

— Canonical ordering (different than
In memory)

B Ghost cell
B Stored element
’-Q‘\

Argonne & E(CIP =

25 NATIONAL LABORATORY

— Skipping ghost cells

25 ATPESC 2017, July 30 — August 11, 2017

FLASH Astrophysics and the write-combining
optimization
 FLASH writes one variable at
a tlme FLASH checkpont 170

* Could combine all 4D 7
variables (temperature, s |
pressure, etc) into one 5D :
variable , 55

5
&
5
: : 2 st
— Altered file format (conventions) = .|
il
5
3
5
4

requires updating entire analysis
toolchain .

 \WWrite-combining provides
Improved performance with
same file conventions

— Larger requests, less
synchronization.

096 G192 16384 32768 655356

"" \
\ EXASCALE

) —) COMPUTING
PROJECT

Argonne &

26 NATIONAL LABORATORY \

26 ATPESC 2017, July 30 — August 11, 2017

HACC: understanding cosmos via simulation

« “Cosmology = Physics + Simulation “ (Salman
Habib)

« SKy surveys collecting massive amounts of data
— (~100 PB)

 Understanding of these massive datasets rests on
modeling distribution of cosmic entities

 Seed simulations with initial conditions

* Run for 13 billion (simulated) years

« Comparison with observed data validates physics
model.

* |/O challenges:
— Checkpointing
— analysis

]
- »
] 4
’

Argonne & E(C)P s

27 NATIONAL LABORATORY

27 ATPESC 2017, July 30 — August 11, 2017

Parallel NetCDF Particle Output

* Metadata, index, and particle data

o Metadata Particles
® SElf-dESCrlblng pOFtab|e fOrmat Domain size pid|x,y,z| vx,vy,vz [phi
. . Notes
» Can be read with different number |||
of processes than written
Index

« Can be queried for particles within
spatial bounds

Block| Bounds|Start|End

n min, max| e |

e Collaboration with Northwestern

==t

and Argonne: research

demonstrathn File schema for analysis output enables spatial queries of

particle data in a high-level self-describing format.

Argonne &

28 ATPESC 2017, July 30 — August 11, 2017
28 NATIONAL LABORATORY

—

—

{

\\ J EXASCALE
) COMPUTING
PROJECT

HACC particles with pnetcdf: metadata (1/2)

I0::I0(int mode, char *filename, MPI Comm comm) {
ncmpi create(comm, filename, NC 64BIT DATA,
MPI_INFO NULL, &ncfile);

void IO::WriteMetadata(char *notes, float *block size,
float *global min, int *num blocks,
int first time step, int last time step,
int this time step, int num secondary keys,
char **secondary keys) ({

ncmpi put att (ncfile, NC GLOBAL, "notes",
strlen (notes), notes);
ncmpi put att (ncfile, NC GLOBAL, "global min z",

NC FLOAT, 1,&global min[2]);
}

Argonne &

29 ATPESC 2017, July 30 — August 11, 2017
29 NATIONAL LABORATORY

—

—

)

J EXASCALE
COMPUTING
PROJECT

HACC particles with pnetcdf: metadata (2/2)

void IO: :DefineDims () {

ncmpi def dim(ncfile, "KeyIndex", key index, &dim keyindex) ;
char str attribute[100 =
"num blocks x * num blocks y * num blocks z * num kys";

ncmpi def var(ncfile, "KeyIndex", NC_INT,
, &var keyindex);
ncmpi put att text(ncfile, var keyindex, "Key Index",
strlen(str_attribute), str attribute);

strcpy (unit, “km/s”);
ncmpi def var(ncfile, "“Velocity”, NC_FLOAT,
ndims, dimpids, &var velid);
ncmpi put att text(ncfile, var velid, “unit of velocity”, strlen(unit),
unit) ;

}

—

Argonne & E(C)P s

30 NATIONAL LABORATORY

30 ATPESC 2017, July 30 — August 11, 2017

HACC particles with pnetcdf: data

void IO::WriteData(int num particles, float *xx, float *yy, float *zz,
float *vx, float *vy, float *vz,
float *phi, inté4_t *pid, float *mins,
float *maxs) {

nParticles = num particles;
myOffset = 0;
(&nParticles, &myOffset, 1, MPI OFFSET, MPI SUM, comm) ;
MPI Allreduce (MPI IN PLACE, &nParticles, 1, MPI OFFSET,
MPI SUM, comm) ;

start[0] = myOffset; start[l] = O;
count[0] = num particles; count[l] = 3; /* ZYX dimensions */

ncmpi put vara float all(ncfile, var velid, start, count,
&data vel[0] [0]);

} —_—

Argonne & E(C)P s

31 NATIONAL LABORATORY

31 ATPESC 2017, July 30 — August 11, 2017

Parallel-NetCDF Inquiry routines

 Talked a lot about writing, but what about reading?

 Parallel-NetCDF QuickTutorial contains examples of several approaches
to reading and writing

» General approach
1. Obtain simple counts of entities (similar to MPI datatype “envelope”)
2. Inquire about length of dimensions
3. Inquire about type, associated dimensions of variable

* Real application might assume convention, skip some steps

A full parallel reader would, after determining shape of variables, assign
regions of variable to each rank (“decompose”).

— Next slide focuses only on inquiry routines. (See website for I/O code)

—

"ﬁ \
\ EXASCALE

) —) COMPUTING
PROJECT

Argonne &

32 NATIONAL LABORATORY \

32 ATPESC 2017, July 30 — August 11, 2017

Parallel NetCDF Inquiry Routines

int main (int argc, char **argv) {
/* extracted from
*http://trac.mcs.anl.gov/projects/parallel -netcdf/wiki/QuickTutorial
* MReading Data via standard API" */
MPI_TInit (&argc, &argv) ;
ncmpi_open (MPI_COMM WORLD, argv[1l], NC_NOWRITE,
MPI_TINFO_NULL, &ncfile);

/* reader knows nothing about dataset, but we can interrogate with
* query routines: ncmpli_ing tells us how many of each kind of
* nthing" (dimension, variable, attribute) we will find in file */

<::::> ncmpi_ing(ncfile, &ndims, &nvars, &ngatts, &has_unlimited) ;
/* no communication needed after ncmpl_open: all processors have a
* cached view of the metadata once ncmpi_open returns */

dim sizes = calloc(ndims, sizeof (MPI_Offset));
/* netcdf dimension identifiers are allocated sequentially starting
* at zero; same for variable identifiers */
for(i=0; i<ndims; i++) {
ncmpi_ing dimlen(ncfile, 1, &(dim _sizes[i]));
}
for(i=0; i<nvars; i++) {
ncmpi_ing var (ncfile, i, varname, &type, &var_ndims, dimids,
&var_natts) ;
printf ("variable %d has name %s with %d dimensions"
" and %d attributes\n",
i, wvarname, var_ndims, var_natts);

OI0

}

ncmpi_close(ncfile) ;
MPI_Finalize() ;

33 ATPESC 2017, July 30 — August 11, 2017

Argonne &

NATIONAL LABORATORY

33

\
EXASCALE
\) I—) COMPUTING

PROJECT

PnetCDF Wrap-Up

* PnetCDF gives us
— Simple, portable, self-describing container for data
— Collective 1/0
— Data structures closely mapping to the variables described

* If PnetCDF meets application needs, it is likely to give good performance
— Type conversion to portable format does add overhead

« Some limits on (old, common CDF-2) file format:
— Fixed-size variable: <4 GIiB
— Per-record size of record variable: < 4 GiB
— 232-1 records

— New extended file format to relax these limits (CDF-5, released in pnetcdf-1.1.0,
November 2009, integrated in Unidata NetCDF-4.4) -

Argonne ; "'\\ —

() —) COMPUTING
34 NATIONAL LABORATORY \

PROJECT

34 ATPESC 2017, July 30 — August 11, 2017

Additional I/O Interfaces

I/O Middleware organizes accesses from
Data Model Libraries map application Application many processes, especially those using
abstractions onto storage abstractions and collective

HDF5, Parallel netCDF, ADIOS MPI-10, GLEAN, PLFS

I/O Forwarding transforms 1/O from many
clients into fewer, larger request; reduces
lock contention; and bridges between the
HPC system and external storage.

IBM ciod, IOFSL, Cray DVS

Parallel file system maintains logical file

model and provides efficient access to data. _

PVFS, PanFS, GPFS, Lustre
I/O Hardware

’ ~

Argonne & — VP g

ATPESC 2017, July 30 — August 11, 2017 \(\
* wy uau 35 NATIONAL LABORATORY S

Data Model I/O libraries

36 ATPESC 2017, July 30 — August 11, 2017

Parallel-NetCDF: http://www.mcs.anl.gov/pnetcdf
HDF5: http://www.hdfgroup.orqg/HDF5/

NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
— netCDF API with HDF5 back-end

ADIOS: http://adiosapi.org
— Configurable (xml) I/O approaches

SILO: https://wci.lInl.gov/codes/silo/
— A mesh and field library on top of HDF5 (and others)

H5part: http://vis.Ibl.gov/IResearch/AcceleratorSAPP/
— simplified HDF5 API for particle simulations

GIO: https://svn.pnl.gov/gcrm
— Targeting geodesic grids as part of GCRM

P10:

— climate-oriented I/O library; supports raw binary, parallel-netcdf, or serial-netcdf (from master)

... Many more: consider existing libs before deciding to make your own.

36

Argonne &

NATIONAL LABORATORY

=\
\ EXASCALE

) —] COMPUTING
PROJECT

http://www.mcs.anl.gov/pnetcdf
http://www.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm
https://svn.pnl.gov/gcrm

