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Machine learning

Born from the ambitious goal of artificial intelligence
* Two historically opposed approaches
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Machine learning

Gives computers the ability to learn
without being explicitly programmed
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Machine learning
Magic, no, more like gardening

Seeds = Algorithms
Nutrients = Data
Gardener = You
Plants = Programs

In ML, data as a list of examples (or turn it into one)
* ideally many examples
» preferably with each example a vector (or first turn it into one!)
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Supervised learning
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Classification

Input
Training data set (training set) dimensionality:

Turn it into
a nice data
matrix...




Classification

, target
INput (label)
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Each example (row) is now a
d+1-dimensional vector

Each input is a point in
a d-dimensional vector space
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Regression
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Supervised learning: Generic framework

loss function
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Bias variance tradeoff
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e All supervised learning algorithms seek to reduce bias and variance in a
different way
*  No free lunch: no single algorithm will work well on all data set
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Machine learning
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Clustering

* No explicit prediction target
 Use the inherent structures in the data to best organize the data into groups
of maximum commonality (e.g. k-Means)
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Dimension reduction

* No explicit prediction target
* Exploit the inherent structure in the data to summarize or describe data
using less information (e.g. Principle Component Analysis)
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Generative Adversarial Networks

D: Detective

R: Real Data G: Generator (Forger) l: Input for Generato




Generative Adversarial Networks
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Reinforcement learning
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Thank You
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