#### **Overview of Machine Learning Methods**

#### Prasanna Balaprakash

Mathematics and Computer Science Division & Leadership Computing Facility Argonne National Laboratory

Argonne Training Program on Extreme-Scale Computing (ATPESC) Aug 5th, 2017

## Acknowledgments

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

https://en.fabernovel.com/insights/tech-en/ai-for-dummies

https://sebastianraschka.com/blog/2016/model-evaluation-selection-part2.html

http://scott.fortmann-roe.com/docs/BiasVariance.html

http://videolectures.net/deeplearning2015\_vincent\_machine\_learning/

Born from the ambitious goal of artificial intelligence

• Two historically opposed approaches







Artificial Intelligence

Machine Learning

Deep Learning

Deep Neural Networks

## Machine learning Magic, no, more like gardening

- **Seeds** = Algorithms
- Nutrients = Data
- Gardener = You
- **Plants** = Programs



In ML, data as a list of examples (or turn it into one)

- ideally many examples
- preferably with each example a **vector** (or first turn it into one!)



#### Supervised learning



#### Classification



#### Classification



### Regression





# Supervised learning: Generic framework

- 3 elements
  - function family
  - loss function
    - measure how wrongly the model predicts
  - search for the best function
    - mathematical optimization



#### Bias variance tradeoff



- All supervised learning algorithms seek to reduce bias and variance in a different way
- *No free lunch*: no single algorithm will work well on all data set



# Clustering

- No explicit prediction target
- Use the inherent structures in the data to best *organize the data into groups* of maximum commonality (e.g. k-Means)



#### **Dimension reduction**

- No explicit prediction target
- Exploit the inherent structure in the data to summarize or describe data using less information (e.g. Principle Component Analysis)



# **Generative Adversarial Networks**



#### **Generative Adversarial Networks**





## **Reinforcement learning**









## Thank You

www.mcs.anl.gov/~pbalapra