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Outline

• Software
• Definition of ODEs and DAEs 
• Stability and stability restrictions
• Implicit vs. explicit methods
• Stiffness
• Linear multistep methods
• Multistage methods and additive 

multistage methods

• Need for solvers
• Adaptive methods
• Rootfinding
• Data use
• SUNDIALS
• Summary
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High performance time integration software is available in 
the DOE in different forms that meet different needs

• PETSc: TS package, includes DAE and ODE integrators 
based on variable step multistage methods and additive 
multistage methods, C

• Trilinos: Rythmos and Chronos, include ODE and DAE 
integrators, C++

• SUNDIALS: Variable step and variable order linear 
multistep methods, variable step multistage and additive 
multistage methods, C

While there are numerous integration packages, this talk will 
emphasize the way SUNDIALS handles each of presented topics
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ODEs and DAEs arise in numerous application areas

• Ordinary Differential Equations (ODEs)
– Method of lines discretization of PDEs: f embeds all of the discrete spatial 

operations
– Chemical reactions: f includes terms for each reaction

• Differential Algebraic Equations (DAEs) 𝐹𝐹 (𝑡𝑡,𝑦𝑦, �̇�𝑦) = 0,   y(0) = y0
– Method of lines discretization of PDEs with algebraic constraints
– Transmission power system models: F includes differential equations for 

power generators and a large network-based algebraic system constraining 
power flow

– Circuit models
– If              is invertible, we solve for    to obtain an ordinary differential 

equation (ODE), but this is not always the best approach
– Else, the system is a differential algebraic equation (DAE)

yF ∂∂ / y

Magnetic reconnection

US Transmission grid
(Wikimedia Commons)
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Stability is a key concept when discussing time 
integration

Dalquist test equation: 
Exact solution: 

If Re(λ)<0, then |y(tn)| decays exponentially, and we cannot tolerate growth in yn

Absolute stability requirement 

Region of absolute stability of an integrator: 

where an integrator can be written as yn = R(z)yn-1, with time advance z = hλ
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Forward and backward Euler show different stability 
restrictions

• Forward Euler:

So, if λ < 0, FE has the step size restriction:

• Backward Euler:

So, if λ < 0, BE has the step size restriction:
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Forward Euler is 
an explicit method

Backward Euler is 
an implicit method
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Curtiss and Hirchfelder example demonstrates what can 
happen with failure to meet the stability step restriction

( )( ) 5050 −=−−= λtcosyy

Solution curves
time

y

Forward Euler 
h=2.01/50
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Meeting the restriction with an explicit method or using 
an implicit method makes a difference!

( )( ) 5050 −=−−= λtcosyy

time

y

Implicit schemes 
h=0.5 for BEForward Euler 
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Explicit and implicit approaches should be selected 
based on needs of the problem

Explicit Methods
Easy to conceptualize

Easy to code

Do not require solvers
XStability limits on step sizes

XTracks fastest dynamics

Implicit Methods
Less or nonexistent stability limits

Steps over fastest dynamics

XRequire linear and/or nonlinear solvers
XSolvers generally require coupling over 

all unknowns

XCode complexity higher

Implicit methods are most useful when fast dynamics of little interest are present, 
and accuracy requirements would dictate a much larger time step for resolution 
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• (Ascher and Petzold, 1998): If the system has widely varying time scales, and the 
phenomena that change on fast scales are stable, then the problem is stiff

• Stiffness depends on
– Jacobian eigenvalues, λj

– System dimension
– Accuracy requirements
– Length of simulation

• In general a problem is stiff on [t0, t1] if

• Due to stability requirements, stiff problems generally require implicit approaches

For any time-dependent system, need to know if it is stiff 
before choosing a numerical solution approach

101 −<<ℜ− )(min)tt( jj
λ

Implicit approaches for stiff problems often require a very 
robust nonlinear solver for each time step solution
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Linear multistep methods construct approximations 
based on prior states
• Linear Multistep Methods

• Nonstiff Implicit: Adams-Moulton
– K1 = 1, K2 = k, k = 1,…,12

• Stiff: Backward Differentiation Formulas [BDF]
– K1 = k, K2 = 0, k = 1,…,5

• Stiff integrators often use a predictor-corrector scheme:

Explicit predictor to give yn(0) Implicit corrector with yn(0) as 
initial iterate

Stability region is NOT shaded

Re(z)

Im
(z

)
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Multistage methods construct approximations based on 
estimates of derivatives at multiple points in a time step
• Multistage methods employ multiple stage solutions

• The a’s, b’s, c’s, and s define the method, its order of accuracy, and its stability 

• Codes with adaptivity in spatial systems or models cannot easily use multi-step 
methods due to need to interpolate prior step information

• Runge-Kutta (RK) methods are multistage so do not require prior states

• RK methods require multiple nonlinear solves per time step

• Additive RK methods can apply explicit and implicit methods to a split system allowing 
consistent approximations while using different methods on each

Butcher Tableau
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Additive methods address systems with both stiff and 
nonstiff components
• Split system into stiff, fI, and nonstiff, fE, components
• M may be the identity or any nonsingular mass matrix (e.g. FEM)

• Variable step size additive Runge-Kutta Methods combine explicit (ERK) and 
diagonally implicit (DIRK) RK methods to enable an ImEx integrator  

• Let tn,j = tn-1 + cj∆tn:

• Solve for stage solutions,  zi, i= 1, …, s,  sequentially
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Implicit solutions result in nonlinear systems at each time 
step or stage

• Use predicted value as the initial iterate for the nonlinear solver
• Nonstiff systems: Functional iteration or fixed point iteration

• Stiff systems: Newton iteration

ODE DAE
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Adaptive methods choose time steps to minimize local 
truncation error and maximize efficiency

• User-defined tolerances:
– Absolute tolerance on each solution component, ATOLi

– Relative tolerance for all solution components, RTOL 

• Norm calculations are weighted by:

• Errors are measured with a weighted root-mean-square norm:

• Choose time steps to bound an estimate of the local truncation error; can do with 
both multistep and multistage methods
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The choice of tolerances is critical to accuracy and 
efficiency for these adaptive methods
• The relative tolerance controls error relative to the size of the solution

– RTOL = 10-4 means that errors are controlled to 0.01%
– We do not recommend an RTOL above 10-3 nor one close to unit roundoff, 10-15

• The absolute tolerances control the absolute size of error when any solution component 
may be so small that pure relative error control is meaningless
– Ex: solution starting at a nonzero value but decaying to a noise level, ATOL should be set to 

the noise level
– If different components have different noise levels then want ATOL to be a vector

• In general, want to be a bit conservative with these tolerances
– Rule of thumb: use tolerances 0.01 below desired limits to ensure global errors are below limit

• But not too conservative as the integrator will work harder to meet tight tolerances

To use these adaptive methods 
effectively, choose tolerances carefully!
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Rootfinding capabilities are critical in some applications

• Finds roots of solution-dependent user-defined functions,                  or 
• Important in applications where problem definition may change based on a 

function of the solution

• Rootfinding is a critical feature for applications like power grid where solution-
dependent system adaptations are common, e.g. voltage limit on a generator

• Roots are found by looking at sign changes, so only roots of odd multiplicity are 
found

• Checks each time interval for sign change

• When sign changes are found, apply a modified secant method with a tight 
tolerance to identify root

0),,( =yytgi 0),( =ytgi
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Time integrator algorithms do not need to rely on 
specific data layouts

• All operations within the integrator can be conducted on vectors
• Packages define a vector API; users can use their structures coded to this API
• Within SUNDIALS, each vector implementation defines a content structure and 

all implemented vector operations, along with routines to clone vectors
• For an implicit method, data layouts are used in

– Specific vector implementations (streaming and reduction)

– Solvers (linear and/or nonlinear)

– Problem-defining function evaluations, f and F, and Jacobian evaluations

Using a time integrator on a given machine requires an efficient implementation of the 
problem-defining functions, as these typically are the dominant cost
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SUNDIALS: SUite of Nonlinear and DIfferential / 
ALgebraic equation Solvers
• ODE integrators: 

– (CVODE/CVODES) variable order and step stiff BDF and non-stiff Adams
– (ARKode) variable step implicit, explicit, and additive IMEX Runge-Kutta

• DAE integrators: (IDA/IDAS) variable order and step stiff integrators
• CVODES and IDAS are equipped with forward and adjoint sensitivity analysis
• Nonlinear Solver: (KINSOL) Newton-Krylov, Picard, and accelerated fixed point
• Serial, MPI, openMP, and pthreads vectors; CUDA will be released this fall
• Written in C with interfaces to Fortran
• Designed to be easily incorporated into existing codes
• Modular design allows users to supply their own data structures
• CMAKE-based portable build system
• Freely available (BSD license); >11,000 downloads/year from around the world
• Active user community supported by sundials-users email list

http://www.llnl.gov/CASC/sundials

http://www.llnl.gov/CASC/sundials
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SUNDIALS has been used worldwide in applications from 
research and industry
• Power grid modeling (RTE France, LLNL, ISU)
 Simulation of clutches and power train parts (LuK GmbH & Co.)
 Magnetism at the nanoscale (Magpar, Nmag)
• 3D parallel fusion (SMU, U. York, LLNL)
• Spacecraft trajectory simulations (NASA)
• Dislocation dynamics (LLNL)
• Combustion and reacting flows (Cantera)
 Large-scale subsurface flows (Mines, LLNL)
 3D battery simulation (ORNL - AMPERE)
 Computational modeling of neurons (NEURON)
 Micromagnetic simulations (U. Southampton)
 Released in third party packages:
 Red Hat Extra Packages for Enterprise Linux (EPEL
 SciPy – python wrap of SUNDIALS
 Cray Third Party Software Library (TPSL)

Magnetic reconnection

Core collapse 
supernova

Dislocation dynamics

Subsurface flow
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Summary
• When choosing a time integration method, need to understand

– What the time scales in the system are

– Whether the application requires resolving all time scales

– Whether the system is stiff

– Whether the system has adaptivity in the spatial or model components

– What the accuracy requirements are

• The choice of tolerances can impact both accuracy and performance
• Multistep and multistage methods have different characteristics that may make 

each better suited to an application
• Implicit methods will need algebraic solvers (nonlinear and/or linear)
• Time integrators can be implemented in a data agnostic way allowing for use of 

application-specific data structures
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