
ATPESC Numerical Software Track

Time Integration

Presented to
ATPESC 2017 Participants

Carol S. Woodward
SUNDIALS Project Lead
Lawrence Livermore National Laboratory

Q Center, St. Charles, IL (USA)
Date 08/07/2017

ATPESC 2017, July 30 – August 11, 20172

Outline

• Software
• Definition of ODEs and DAEs
• Stability and stability restrictions
• Implicit vs. explicit methods
• Stiffness
• Linear multistep methods
• Multistage methods and additive

multistage methods

• Need for solvers
• Adaptive methods
• Rootfinding
• Data use
• SUNDIALS
• Summary

ATPESC 2017, July 30 – August 11, 20173

High performance time integration software is available in
the DOE in different forms that meet different needs

• PETSc: TS package, includes DAE and ODE integrators
based on variable step multistage methods and additive
multistage methods, C

• Trilinos: Rythmos and Chronos, include ODE and DAE
integrators, C++

• SUNDIALS: Variable step and variable order linear
multistep methods, variable step multistage and additive
multistage methods, C

While there are numerous integration packages, this talk will
emphasize the way SUNDIALS handles each of presented topics

ATPESC 2017, July 30 – August 11, 20174

ODEs and DAEs arise in numerous application areas

• Ordinary Differential Equations (ODEs)
– Method of lines discretization of PDEs: f embeds all of the discrete spatial

operations
– Chemical reactions: f includes terms for each reaction

• Differential Algebraic Equations (DAEs) 𝐹𝐹 (𝑡𝑡,𝑦𝑦, �̇�𝑦) = 0, y(0) = y0
– Method of lines discretization of PDEs with algebraic constraints
– Transmission power system models: F includes differential equations for

power generators and a large network-based algebraic system constraining
power flow

– Circuit models
– If is invertible, we solve for to obtain an ordinary differential

equation (ODE), but this is not always the best approach
– Else, the system is a differential algebraic equation (DAE)

yF ∂∂ / y

Magnetic reconnection

US Transmission grid
(Wikimedia Commons)

ATPESC 2017, July 30 – August 11, 20175

Stability is a key concept when discussing time
integration

Dalquist test equation:
Exact solution:

If Re(λ)<0, then |y(tn)| decays exponentially, and we cannot tolerate growth in yn

Absolute stability requirement

Region of absolute stability of an integrator:

where an integrator can be written as yn = R(z)yn-1, with time advance z = hλ

,yy λ= 10 =y
nt

n ey)t(y λ
0=

,...,n,yy nn 211 =≤ −

{ }1≤∈=)z(R;CzS

ATPESC 2017, July 30 – August 11, 20176

Forward and backward Euler show different stability
restrictions

• Forward Euler:

So, if λ < 0, FE has the step size restriction:

• Backward Euler:

So, if λ < 0, BE has the step size restriction:

() λλ h)z(Ryhyy nnn +=⇒+= −− 111

λ−
≤

2h

()
λ

λ
h

)z(Ryhyy nnn −
=⇒+= − 1

1
1

0>h

Forward Euler is
an explicit method

Backward Euler is
an implicit method

ATPESC 2017, July 30 – August 11, 20177

Curtiss and Hirchfelder example demonstrates what can
happen with failure to meet the stability step restriction

()() 5050 −=−−= λtcosyy

Solution curves
time

y

Forward Euler
h=2.01/50

ATPESC 2017, July 30 – August 11, 20178

Meeting the restriction with an explicit method or using
an implicit method makes a difference!

()() 5050 −=−−= λtcosyy

time

y

Implicit schemes
h=0.5 for BEForward Euler

ATPESC 2017, July 30 – August 11, 20179

Explicit and implicit approaches should be selected
based on needs of the problem

Explicit Methods
Easy to conceptualize

Easy to code

Do not require solvers
XStability limits on step sizes

XTracks fastest dynamics

Implicit Methods
Less or nonexistent stability limits

Steps over fastest dynamics

XRequire linear and/or nonlinear solvers
XSolvers generally require coupling over

all unknowns

XCode complexity higher

Implicit methods are most useful when fast dynamics of little interest are present,
and accuracy requirements would dictate a much larger time step for resolution

ATPESC 2017, July 30 – August 11, 201710

• (Ascher and Petzold, 1998): If the system has widely varying time scales, and the
phenomena that change on fast scales are stable, then the problem is stiff

• Stiffness depends on
– Jacobian eigenvalues, λj

– System dimension
– Accuracy requirements
– Length of simulation

• In general a problem is stiff on [t0, t1] if

• Due to stability requirements, stiff problems generally require implicit approaches

For any time-dependent system, need to know if it is stiff
before choosing a numerical solution approach

101 −<<ℜ−)(min)tt(jj
λ

Implicit approaches for stiff problems often require a very
robust nonlinear solver for each time step solution

ATPESC 2017, July 30 – August 11, 201711

Linear multistep methods construct approximations
based on prior states
• Linear Multistep Methods

• Nonstiff Implicit: Adams-Moulton
– K1 = 1, K2 = k, k = 1,…,12

• Stiff: Backward Differentiation Formulas [BDF]
– K1 = k, K2 = 0, k = 1,…,5

• Stiff integrators often use a predictor-corrector scheme:

Explicit predictor to give yn(0) Implicit corrector with yn(0) as
initial iterate

Stability region is NOT shaded

Re(z)

Im
(z

)

ATPESC 2017, July 30 – August 11, 201712

Multistage methods construct approximations based on
estimates of derivatives at multiple points in a time step
• Multistage methods employ multiple stage solutions

• The a’s, b’s, c’s, and s define the method, its order of accuracy, and its stability

• Codes with adaptivity in spatial systems or models cannot easily use multi-step
methods due to need to interpolate prior step information

• Runge-Kutta (RK) methods are multistage so do not require prior states

• RK methods require multiple nonlinear solves per time step

• Additive RK methods can apply explicit and implicit methods to a split system allowing
consistent approximations while using different methods on each

Butcher Tableau

ATPESC 2017, July 30 – August 11, 201713

Additive methods address systems with both stiff and
nonstiff components
• Split system into stiff, fI, and nonstiff, fE, components
• M may be the identity or any nonsingular mass matrix (e.g. FEM)

• Variable step size additive Runge-Kutta Methods combine explicit (ERK) and
diagonally implicit (DIRK) RK methods to enable an ImEx integrator

• Let tn,j = tn-1 + cj∆tn:

• Solve for stage solutions, zi, i= 1, …, s, sequentially

ATPESC 2017, July 30 – August 11, 201714

Implicit solutions result in nonlinear systems at each time
step or stage

• Use predicted value as the initial iterate for the nonlinear solver
• Nonstiff systems: Functional iteration or fixed point iteration

• Stiff systems: Newton iteration

ODE DAE

ATPESC 2017, July 30 – August 11, 201715

Adaptive methods choose time steps to minimize local
truncation error and maximize efficiency

• User-defined tolerances:
– Absolute tolerance on each solution component, ATOLi

– Relative tolerance for all solution components, RTOL

• Norm calculations are weighted by:

• Errors are measured with a weighted root-mean-square norm:

• Choose time steps to bound an estimate of the local truncation error; can do with
both multistep and multistage methods

ATPESC 2017, July 30 – August 11, 201716

The choice of tolerances is critical to accuracy and
efficiency for these adaptive methods
• The relative tolerance controls error relative to the size of the solution

– RTOL = 10-4 means that errors are controlled to 0.01%
– We do not recommend an RTOL above 10-3 nor one close to unit roundoff, 10-15

• The absolute tolerances control the absolute size of error when any solution component
may be so small that pure relative error control is meaningless
– Ex: solution starting at a nonzero value but decaying to a noise level, ATOL should be set to

the noise level
– If different components have different noise levels then want ATOL to be a vector

• In general, want to be a bit conservative with these tolerances
– Rule of thumb: use tolerances 0.01 below desired limits to ensure global errors are below limit

• But not too conservative as the integrator will work harder to meet tight tolerances

To use these adaptive methods
effectively, choose tolerances carefully!

ATPESC 2017, July 30 – August 11, 201717

Rootfinding capabilities are critical in some applications

• Finds roots of solution-dependent user-defined functions, or
• Important in applications where problem definition may change based on a

function of the solution

• Rootfinding is a critical feature for applications like power grid where solution-
dependent system adaptations are common, e.g. voltage limit on a generator

• Roots are found by looking at sign changes, so only roots of odd multiplicity are
found

• Checks each time interval for sign change

• When sign changes are found, apply a modified secant method with a tight
tolerance to identify root

0),,(=yytgi 0),(=ytgi

ATPESC 2017, July 30 – August 11, 201718

Time integrator algorithms do not need to rely on
specific data layouts

• All operations within the integrator can be conducted on vectors
• Packages define a vector API; users can use their structures coded to this API
• Within SUNDIALS, each vector implementation defines a content structure and

all implemented vector operations, along with routines to clone vectors
• For an implicit method, data layouts are used in

– Specific vector implementations (streaming and reduction)

– Solvers (linear and/or nonlinear)

– Problem-defining function evaluations, f and F, and Jacobian evaluations

Using a time integrator on a given machine requires an efficient implementation of the
problem-defining functions, as these typically are the dominant cost

ATPESC 2017, July 30 – August 11, 201719

SUNDIALS: SUite of Nonlinear and DIfferential /
ALgebraic equation Solvers
• ODE integrators:

– (CVODE/CVODES) variable order and step stiff BDF and non-stiff Adams
– (ARKode) variable step implicit, explicit, and additive IMEX Runge-Kutta

• DAE integrators: (IDA/IDAS) variable order and step stiff integrators
• CVODES and IDAS are equipped with forward and adjoint sensitivity analysis
• Nonlinear Solver: (KINSOL) Newton-Krylov, Picard, and accelerated fixed point
• Serial, MPI, openMP, and pthreads vectors; CUDA will be released this fall
• Written in C with interfaces to Fortran
• Designed to be easily incorporated into existing codes
• Modular design allows users to supply their own data structures
• CMAKE-based portable build system
• Freely available (BSD license); >11,000 downloads/year from around the world
• Active user community supported by sundials-users email list

http://www.llnl.gov/CASC/sundials

http://www.llnl.gov/CASC/sundials

ATPESC 2017, July 30 – August 11, 201720

SUNDIALS has been used worldwide in applications from
research and industry
• Power grid modeling (RTE France, LLNL, ISU)
 Simulation of clutches and power train parts (LuK GmbH & Co.)
 Magnetism at the nanoscale (Magpar, Nmag)
• 3D parallel fusion (SMU, U. York, LLNL)
• Spacecraft trajectory simulations (NASA)
• Dislocation dynamics (LLNL)
• Combustion and reacting flows (Cantera)
 Large-scale subsurface flows (Mines, LLNL)
 3D battery simulation (ORNL - AMPERE)
 Computational modeling of neurons (NEURON)
 Micromagnetic simulations (U. Southampton)
 Released in third party packages:
 Red Hat Extra Packages for Enterprise Linux (EPEL
 SciPy – python wrap of SUNDIALS
 Cray Third Party Software Library (TPSL)

Magnetic reconnection

Core collapse
supernova

Dislocation dynamics

Subsurface flow

ATPESC 2017, July 30 – August 11, 201721

Summary
• When choosing a time integration method, need to understand

– What the time scales in the system are

– Whether the application requires resolving all time scales

– Whether the system is stiff

– Whether the system has adaptivity in the spatial or model components

– What the accuracy requirements are

• The choice of tolerances can impact both accuracy and performance
• Multistep and multistage methods have different characteristics that may make

each better suited to an application
• Implicit methods will need algebraic solvers (nonlinear and/or linear)
• Time integrators can be implemented in a data agnostic way allowing for use of

application-specific data structures

	Time Integration
	Outline
	High performance time integration software is available in the DOE in different forms that meet different needs
	ODEs and DAEs arise in numerous application areas
	Stability is a key concept when discussing time integration
	Forward and backward Euler show different stability restrictions
	Curtiss and Hirchfelder example demonstrates what can happen with failure to meet the stability step restriction
	Meeting the restriction with an explicit method or using an implicit method makes a difference!
	Explicit and implicit approaches should be selected based on needs of the problem
	For any time-dependent system, need to know if it is stiff before choosing a numerical solution approach
	Linear multistep methods construct approximations based on prior states
	Multistage methods construct approximations based on estimates of derivatives at multiple points in a time step
	Additive methods address systems with both stiff and nonstiff components
	Implicit solutions result in nonlinear systems at each time step or stage
	Adaptive methods choose time steps to minimize local truncation error and maximize efficiency
	The choice of tolerances is critical to accuracy and efficiency for these adaptive methods
	Rootfinding capabilities are critical in some applications
	Time integrator algorithms do not need to rely on specific data layouts
	SUNDIALS: SUite of Nonlinear and DIfferential / ALgebraic equation Solvers
	SUNDIALS has been used worldwide in applications from research and industry
	Summary

