Sparse Direct Solvers

Presented to ATPESC 2017 Participants

X. Sherry Li Senior Scientist, LBNL

Q Center, St. Charles, IL (USA) 08/07/2017

ATPESC Numerical Software Track

Outline of Tutorial

- Why direct solvers?
- Sparse matrix distributed data structure
- Algorithms
- Software, user interface
- Examples, Fortran 90 interface
- Hands-on exercises

Strategies of sparse linear solvers

- Iterative methods: (e.g., Krylov, multigrid, …)
 - A is not changed (read-only)
 - Key kernel: sparse matrix-vector multiply
 - Easier to optimize and parallelize
 - Low algorithmic complexity, but may not converge

Direct methods:

- A is modified (factorized) : A = L*U
 - Harder to optimize and parallelize
- Numerically robust, but higher algorithmic complexity

Often use direct method to precondition iterative method

Solve an easy system: M⁻¹Ax = M⁻¹b

- SuperLU: conventional direct solver for general unsymmetric linear systems.
 - X.S. Li, J. Demmel, J. Gilbert, L. Grigori, P. Sao, M. Shao, I. Yamazaki
 - $O(N^2)$ flops, $O(N^{4/3})$ memory for typical 3D PDEs.
 - C, hybrid MPI+ OpenMP + CUDA; Provide Fortran interface.
 - Real, complex.
 - Componentwise error analysis and error bounds (guaranteed solution accuracy), condition number estimation.
 - http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
- STRUMPACK: "inexact" direct solver, preconditioner.
 - P. Ghysels, C. Gorman, F.-H. Rouet, X.S. Li
 - O(N^{4/3} logN) flops, O(N) memory for 3D elliptic PDEs.
 - C++, hybrid MPI + OpenMP; Provide Fortran interface.
 - Real, complex.
 - http://portal.nersc.gov/project/sparse/strumpack/

SuperLU Installation

Download site:

- Tarball: http://crd.lbl.gov/~xiaoye/SuperLU
- Github: https://github.com/xiaoyeli/superlu_dist
- Users' Guide, HTML code documentation, papers.

Follow README at top level directory

Two ways of building:

- 1. CMake build system.
- 2. Edit make.inc (compilers, optimizations, libraries, ...)

• Dependency: BLAS, ParMetis or PT-Scotch (parallel ND ordering)

- Link with a fast BLAS library
 - The one under CBLAS/ is functional, but not optimized
 - Vendor, OpenBLAS, ATLAS, ...

Use multicore, GPU

- Instructions in top-level README.
- To use OpenMP parallelism:

Export OMP_NUM_THREADS=<##>

- To enable Nvidia GPU access, need to take the following 2 step:
 - set the following Linux environment variable: export ACC=GPU
 - Add the CUDA library location in make.inc: (see sample make.inc) ifeq "\${ACC}" "GPU"

CUDA_FLAGS = -DGPU_ACC

INCS += -I<CUDA directory>/include

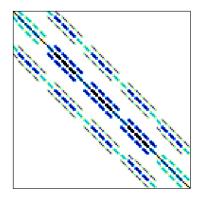
LIBS += -L<CUDA directory>/lib64 -lcublas –lcudart

endif

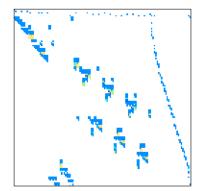
Direct solvers can support wide range of applications

- fluid dynamics, structural mechanics, chemical process simulation, circuit simulation, electromagnetic fields, magnetohydrodynamics, seismic-imaging, economic modeling, optimization, data analysis, statistics,
- Symmetric, nonsymmetric, indefinite, ill-conditioned ...
- Example: A of dimension 10⁶, 10~100 nonzeros per row
- Matlab: > spy(A)

Boeing/msc00726 (structural eng.)

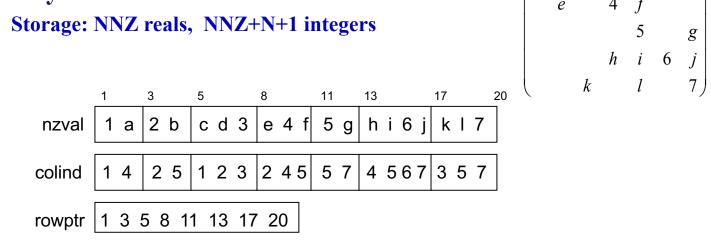


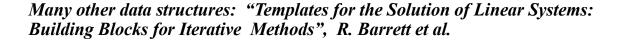
Mallya/lhr01 (chemical eng.)



Sparse data structure: Compressed Row Storage (CRS)

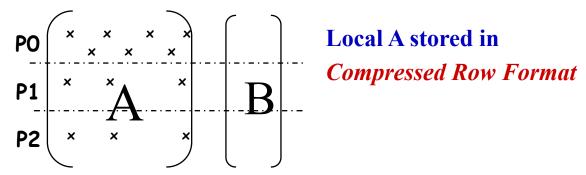
- Store nonzeros row by row contiguously
- Example: N = 7, NNZ = 19
- 3 arrays:
 - Storage: NNZ reals, NNZ+N+1 integers





Distributed input interface

- **Matrices involved:**
 - A, B (turned into X) input, users manipulate them
 - L, U output, users do not need to see them
- A (sparse) and B (dense) are distributed by block rows



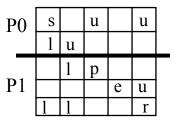
Distributed input interface

 Each process has a structure to store local part of A Distributed Compressed Row Storage

typedef struct { int_t nnz_loc; // number of nonzeros in the local submatrix int_t m_loc; // number of rows local to this processor int_t fst_row; // global index of the first row void *nzval; // pointer to array of nonzero values, packed by row int_t *colind; // pointer to array of column indices of the nonzeros int_t *rowptr; // pointer to array of beginning of rows in nzval[]and colind[] } NRformat_loc;

Distributed Compressed Row Storage

A is distributed on 2 processors:

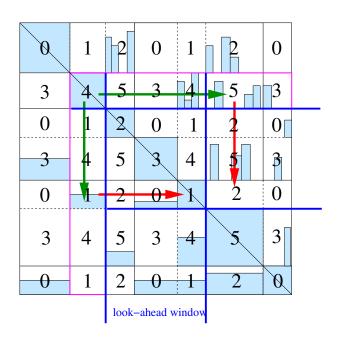


- Processor P0 data structure:
 - $nnz_{loc} = 5$
 - m_loc = 2
 - fst_row = 0 // 0-based indexing
 - $nzval = \{ s, u, u, l, u \}$
 - colind = $\{0, 2, 4, 0, 1\}$
 - rowptr = { 0, 3, 5 }

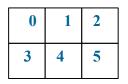
- Processor P1 data structure:
 - nnz_loc = 7
 - $m_{loc} = 3$
 - fst_row = 2 // 0-based indexing
 - $nzval = \{ l, p, e, u, l, l, r \}$
 - colind = $\{1, 2, 3, 4, 0, 1, 4\}$
 - rowptr = { 0, 2, 4, 7 }

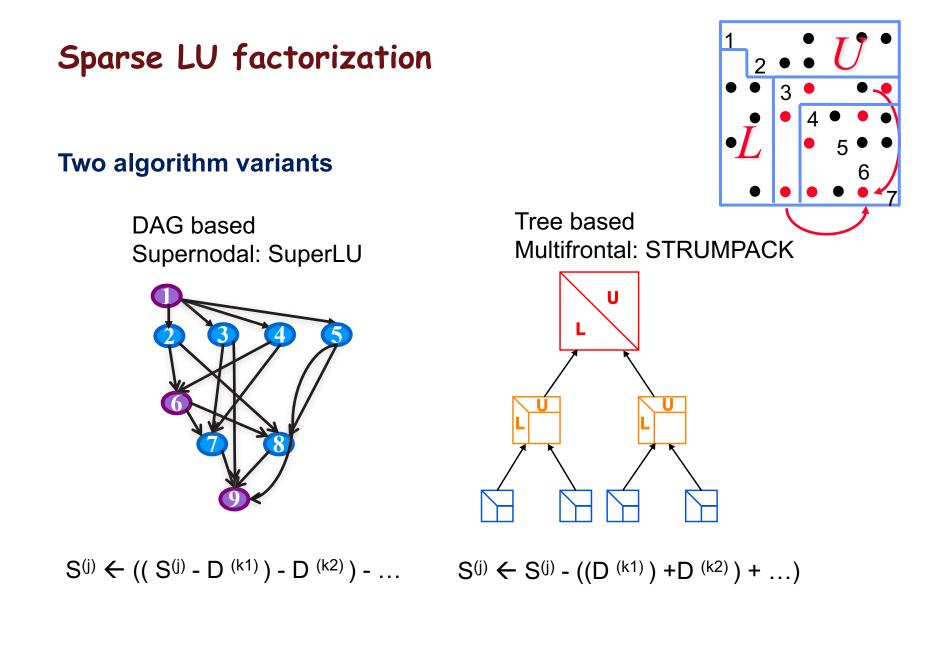
Internal : distributed L & U factored matrices

- 2D block cyclic layout input by user
- Process grid should be as square as possible. Or, set the row dimension (nprow) slightly smaller than the column dimension (npcol).
 - For example: 2x3, 2x4, 4x4, 4x8, etc.



MPI Process Grid





Algorithm phases

1. Reorder equations to minimize fill, maximize parallelism (~10% time)

- Sparsity structure of L & U depends on A, which can be changed by row/column permutations (vertex re-labeling of the underlying graph)
- Ordering (combinatorial algorithms; "NP-complete" to find optimum [Yannakis '83]; use heuristics)

2. Predict the fill-in positions in L & U (~10% time)

- Symbolic factorization (combinatorial algorithms)
- 3. Design efficient data structure for storage and quick retrieval of the nonzeros
 - Compressed storage schemes

4. Perform factorization and triangular solutions (~80% time)

- Numerical algorithms (F.P. operations only on nonzeros)
- Usually dominate the total runtime

For sparse Cholesky and QR, the steps can be separate. For sparse LU with pivoting, steps 2 and 4 my be interleaved.

User-controllable options

For stability and efficiency, need to factorize a transformed matrix:

 $P_c(P_r(D_rAD_c))P_c^T$

"Options" fields with C enum constants:

- Equil: {NO, YES}
- RowPerm: {NOROWPERM, LargeDiag, MY_PERMR}
- ColPerm: {NATURAL, MMD_ATA, MMD_AT_PLUS_A, COLAMD, METIS_AT_PLUS_A, PARMETIS, ZOLTAN, MY_PERMC}

Call routine set_default_options_dist(&options) to set default values.

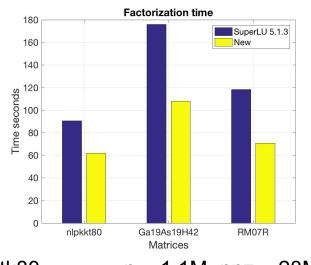
Tips for Debugging Performance

- Check sparsity ordering
- Diagonal pivoting is preferable
 - E.g., matrix is diagonally dominant, ...
- Need good BLAS library (vendor, OpenBLAS, ATLAS)
 - May need adjust block size for each architecture (Parameters modifiable in routine sp_ienv())
 - Larger blocks better for uniprocessor
 - Smaller blocks better for parallellism and load balance
 - New xSDK4ECP project: automatic tuning for block size.

SuperLU_DIST performance on Intel KNL

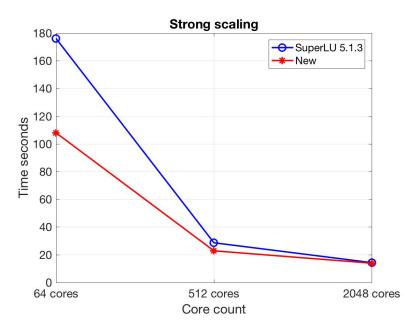
Single node improvement

- Aggregate large GEMM
- OpenMP task parallel
- Vectorize scatter
- Cacheline- & Page-aligned malloc



nlpttk80, n = 1.1M, nnz = 28M Ga19As19H42, n = 1.3M, nnz = 8.8M RM07R, n = 0.3M, nnz = 37.5M

Strong scaling to 32 nodes



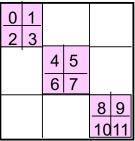
Current work: 3D algorithm to reduce communication, increase parallelism

Examples in EXAMPLE/

See README

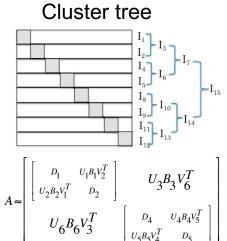
- pddrive.c: Solve one linear system.
- pddrive1.c: Solve the systems with same A but different right-hand side at different times.
 - Reuse the factored form of A.
- pddrive2.c: Solve the systems with the same pattern as A.
 - Reuse the sparsity ordering.
- pddrive3.c: Solve the systems with the same sparsity pattern and similar values.
 - Reuse the sparsity ordering and symbolic factorization.
- pddrive4.c: Divide the processes into two subgroups (two grids) such that each subgroup solves a linear system independently from the other.

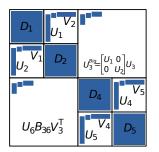
Block Jacobi preconditioner

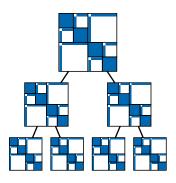


STRUMPACK "inexact" direct solver

- Baseline is a sparse multifrontal direct solver.
- In addition to structural sparsity, further apply data-sparsity with low-rank compression:
 - O(N logN) flops, O(N) memory for 3D elliptic PDEs.
- Hierarchical matrix algebra generalizes Fast Multipole
 - Diagonal block ("near field") exact; off-diagonal block ("far field") approximated via low-rank compression.
 - Hierarchically semi-separable (HSS), HODLR, etc.
 - Nested bases + randomized sampling to achieve linear scaling.
- Applications: PDEs, BEM methods, integral equations, machine learning, and structured matrices such as Toeplitz, Cauchy matrices.







STRUMPACK Installation

- Download site:
 - Tarball: http://portal.nersc.gov/project/sparse/strumpack/
 - Github: https://github.com/pghysels/STRUMPACK
 - Users' Guide, code documentation, papers
- Dependency: BLAS, ParMetis or PT-Scotch, SCALAPACK
- CMake example:
 - > export METISDIR=/path/to/metis
 - > export PARMETISDIR=/path/to/parmetis
 - > export SCOTCHDIR=/path/to/scotch
 - > cmake ../strumpack-sparse -DCMAKE_BUILD_TYPE=Release \ -DCMAKE_INSTALL_PREFIX=/path/to/install \
 - -DCMAKE_CXX_COMPILER=<C++ (MPI) compiler> \
 - -DCMAKE_C_COMPILER=<C (MPI) compiler> \
 - -DCMAKE_Fortran_COMPILER=<Fortran77 (MPI) compiler> \
 - -DSCALAPACK_LIBRARIES="/path/to/scalapack/libscalapack.a;/path/to/blacs/libblacs.a" \
 - -DMETIS_INCLUDES=/path/to/metis/incluce \
 - -DMETIS_LIBRARIES=/path/to/metis/libmetis.a \
 - -DPARMETIS_INCLUDES=/path/to/parmetis/include \
 - -DPARMETIS_LIBRARIES=/path/to/parmetis/libparmetis.a \
 - -DSCOTCH_INCLUDES=/path/to/scotch/include \
 - -DSCOTCH_LIBRARIES="/path/to/ptscotch/libscotch.a;...libscotcherr.a;...libptscotch.a;...libptscotcherr.a"
 - > make
 - > make examples #optional
 - > make install

Use through PETSc

```
./configure \
    --with-shared-libraries=0 \
    --download-strumpack \
    --with-openmp \
    --with-cxx-dialect=C++11 \
    --download-scalapack \
    --download-parmetis \
    --download-parmetis \
    --download-metis \
    --download-ptscotch \
```

make PETSC_DIR=<petsc-dir> PETSC_ARCH=<petsc-arch-dir> all

```
make PETSC_DIR=<...> PETSC_ARCH=<...> test
```

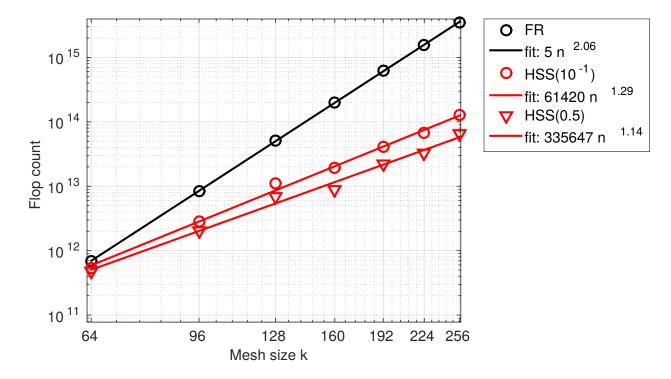
export PETSC_DIR=<...> export PETSC_ARCH=<...> cd src/ksp/ksp/examples/tutorials make ex52

use as direct solver OMP_NUM_THREADS=1 mpirun -n 2 ./ex52 -pc_type lu -pc_factor_mat_solver_package strumpack mat_strumpack_verbose 1

use as approximate factorization preconditioner OMP_NUM_THREADS=1 mpirun -n 2 ./ex52 -pc_type ilu -pc_factor_mat_solver_package strumpack mat_strumpack_verbose 1

STRUMPACK algorithm scaling for 3D Poisson

- Theory predicts O(n^{4/3} log n) flops for compression.
- HSS ranks grow with mesh size $\sim n^{1/3} = k$
- Use as a preconditioner with aggressive compression.



STRUMPACK-dense: parallel weak scaling

- Root node of the multifrontal factorization of a discretized Helmholtz problem (frequency domain, PML boundary, 10Hz).
- For many PDEs on mesh KxKxK, max. off-diagonal rank O(K).

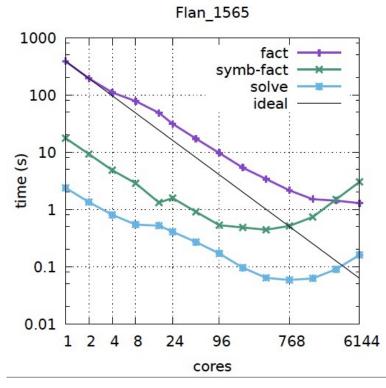
K (mesh: K ³⁾	100	200	300	400	500
Matrix size K ²	10,000	40,000	90,000	160,000	250,000
MPI tasks	64	256	1,024	4,096	8,192
Max. rank	313	638	903	1289	1625
Speedup over ScaLAPACK LU	1.8	4.0	5.4	4.8	3.9

STRUMPACK-sparse: strong scaling

• Matrix from SuiteSparse Matrix Collection:

- Flan_1565 : N= 1,564,794, NNZ = 114,165,372

- Flat MPI on nodes with 2 x 12-core Intel Ivy Bridge, 64GB (NERSC Edison)
- Fill-reducing reordering (ParMetis) has poor scalability, quality decreases



Examples in examples/

See README

- testPoisson2d:
 - A double precision C++ example, solving the 2D Poisson problem with the sequential or multithreaded solver.

• testPoisson2dMPIDist:

 A double precision C++ example, solving the 2D Poisson problem with the fully distributed MPI solver.

• testMMdoubleMPIDist:

 A double precision C++ example, solving a linear system with a matrix given in a file in the matrix-market format, using the fully distributed MPI solver.

testMMdoubleMPIDist64:

 A double precision C++ example using 64 bit integers for the sparse matrix.

• {s,d,c,z}example:

- examples to use C interface.

Summary

- Sparse (approximate) factorizations are important kernels for numerically difficult problems.
- Performance more sensitive to latency than dense case
- Continuing developments funded by DOE ECP and SciDAC projects
 - Integrate into more applications
 - Hybrid model of parallelism for multicore/vector nodes, differentiate intra-node and inter-node parallelism
 - Hybrid programming models, hybrid algorithms
 - More parallel structured matrix precondtioners:
 - HODLR, H/H², butterfly, ...

SuperLU_DIST handson

- Convection-Diffusion equation (steady-state): $\nabla \cdot (\kappa \nabla u) \nabla \cdot (\vec{v} u) + R = 0$ /projects/ATPESC2017/NumericalPackages/handson/mfem/examples/atpesc/superlu
- GMRES iterative solver
 - \$./convdiff (default velocity = 100)
 - \$./convdiff --velocity 1000 (no convergence)
- Switch to SuperLU direct solver
 - \$./convdiff -slu --velocity 1000
- Experiment with different orderings: --slu-colperm
 - 0 natural (default)
 - 1 mmd-ata (minimum degree on graph of A^T*A)
 - 2 mmd_at_plus_a (minimum degree on graph of A^T+A)
 - 3 colamd
 - 4 metis_at_plus_a (Metis on graph of A^T+A)
 - 5 parmetis (ParMetis on graph of A^T+A)

Lessons learned

- Direct solver can deal with ill-conditioned problems.
- Performance may vary greatly with different elimination orders.

EXTRA SLIDES

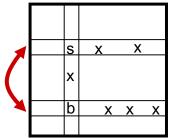
Numerical Pivoting

• Goal of pivoting is to control element growth in L & U for stability

 For sparse factorizations, often relax the pivoting rule to trade with better sparsity and parallelism (e.g., threshold pivoting, static pivoting , . . .)

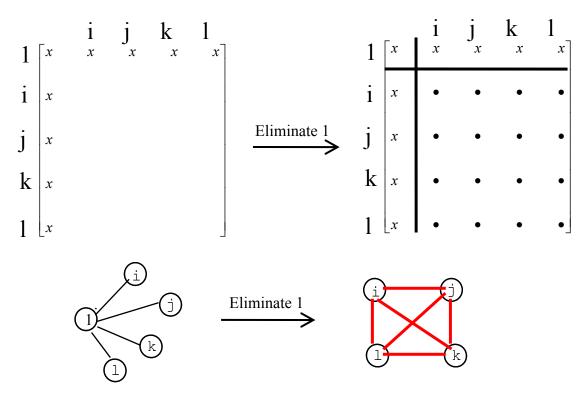
Partial pivoting used in sequential SuperLU and SuperLU_MT (GEPP)

- Can force diagonal pivoting (controlled by diagonal
- threshold)
- Hard to implement scalably for sparse factorization
- Static pivoting used in SuperLU_DIST (GESP)
 - Before factor, scale and permute A to maximize diagonal: P_r D_r A D_c = A'
 - Ouring factor A' = LU, replace tiny pivots by √ε ||A|| , without changing data structures for L & U
 - If needed, use a few steps of iterative refinement after the first solution
 - quite stable in practice



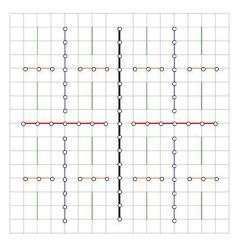
Ordering : Minimum Degree

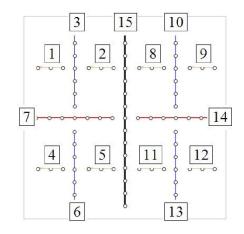
Local greedy: minimize upper bound on fill-in



Ordering : Nested Dissection

- Model problem: discretized system Ax = b from certain PDEs, e.g., 5point stencil on n x n grid, $N = n^2$
 - Factorization flops: $O(n^3) = O(N^{3/2})$
- Theorem: ND ordering gives optimal complexity in exact arithmetic [George '73, Hoffman/Martin/Rose]

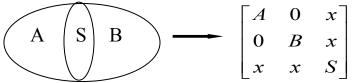




ND Ordering

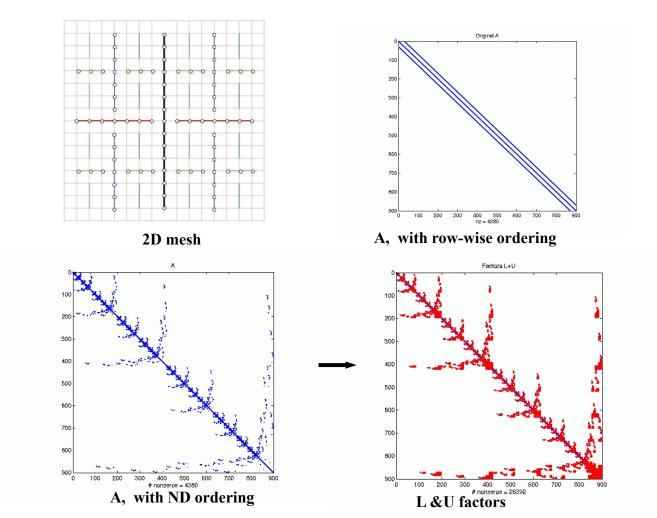
Generalized nested dissection [Lipton/Rose/Tarjan '79]

- Global graph partitioning: top-down, divide-and-conqure
- Best for largest problems
- Parallel codes available: ParMetis, PT-Scotch
- First level



- Recurse on A and B
- Goal: find the smallest possible separator S at each level
 - Multilevel schemes:
 - •Chaco [Hendrickson/Leland `94], Metis [Karypis/Kumar `95]
 - Spectral bisection [Simon et al. `90-`95]
 - Geometric and spectral bisection [Chan/Gilbert/Teng `94]

ND Ordering



Ordering for LU (unsymmetric)

- Can use a symmetric ordering on a symmetrized matrix
- Case of partial pivoting (serial SuperLU, SuperLU_MT):
 - Use ordering based on AT*A
- Case of static pivoting (SuperLU_DIST):
 - Use ordering based on AT+A
- Can find better ordering based solely on A, without symmetrization
 - Diagonal Markowitz [Amestoy/Li/Ng `06]
 - Similar to minimum degree, but without symmetrization
 - Hypergraph partition [Boman, Grigori, et al. `08]
 - Similar to ND on ATA, but no need to compute ATA