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Diagram is for conceptual
purposes only and only
illustrates a CPU and memory –
it is not to scale and does not
include all functional areas of
the CPU, nor does it represent
actual component layout.
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2x 512b VPU per core 
(Vector Processing Units)

Based on Intel® Atom Silvermont processor with 
many HPC enhancements
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The Processor
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Core Features

Hyperthreading 4 SMT threads
Out-of-order 72 entry reorder buffer
VPU 2x AVX-512
High Bandwidth memory 16GiB on-package MCDRAM
L1 Data Cache 32KiB, 8-way, 2 lines read, 1 line write/cycle
L1 Instruction Cache 32KiB, 8-way
L2 Shared Cache 1024KiB (per 2-core tile), 16-way, 1 line read, 

½ line write/cycle
L2 TLB 256 x 4K, 128 x 2M, 16 x 1G pages
Retirement width 2 per cycle
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Throughput, Optimization and Analysis

Peak instruction throughput occurs when every core is retiring two full-width 
SIMD operations per clock.

Peak instruction throughput requires parallelization (use all the cores) and 
vectorization (use all the SIMD lanes).

Peak instruction throughput may not be achievable due to some other limiter, 
typically memory bandwidth.

Performance optimization attempts to achieve peak throughput.

Performance analysis attempts to discover why peak throughput is not reached.

This talk is mostly about performance analysis.
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Impediments to Peak Throughput

Imperfect parallel scalability

• Algorithmic: synchronization and load imbalance (including serial time)

• Architectural: cache contention, memory BW limited

• On- and off-chip interconnect limited (on-chip == Mesh, off-chip == Fabric)

Imperfect SIMD usage

• Non-vectorizable algorithms. Rewrite your code to make it vectorizable.

• Other limitations

• ISA limitations (e.g., data type support)

• Compiler limitations (always improving)

• Sparse masks due to branchy code (less work per instruction)
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Finding Impediments with Vtune

This is the way I use vtune. Other people use it differently. That’s fine.

Use only the hardware event types, primarily advanced hotspots.

Execution model has two concepts:

1. Threads are user application threads, usually bound to hardware threads.

2. Code segments are shared libraries (MPI, OpenMP) or functions of interest

Threads execute code segments and vtune gives us time per code segment per 
thread.

Comparing segment times across threads tells us about parallel execution.

Analyzing code and hardware events within a thread and segment tells us about 
processor performance.
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Case Study

Application: miniFE https://github.com/Mantevo/miniFE

Hybrid OpenMP+MPI sparse solver

Run on 1 node*, 8 MPI ranks

• Run and collect vtune results

• Preliminary overview

• Parallel performance and bottlenecks

• Processor performance characteristics and analysis

• When am I done?
* Vtune installation available on only 1 node of theta at this writing
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Run and Collect Vtune Results

Run vtune with hardware counter sampling on only one MPI rank on one node, 
but collect data for the whole node . Don’t resolve symbols (finalize).
aprun -cc depth -j 4 -d 32 -n 8 -N 8 sh ./run.sh

run.sh:
export PE_RANK=$ALPS_APP_PE
export PMI_NO_FORK=1
if [ "$PE_RANK" == "0" ];then

amplxe-cl -collect advanced-hotspots -analyze-system \
-finalization-mode=none \
./miniFE.x nx=300

else
./miniFE.x nx=300

fi
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Preparing and Viewing Results

Switch to login node and finalize:
﻿source /opt/intel/vtune_amplifier_xe/amplxe-vars.sh

﻿amplxe-cl -finalize -search-dir . -r r000ah/

- You can name the result with –r on the collection line, or vtune names it for you; 
use the same name here

- Semi-advanced: add –search-dir for runtime libraries, e.g.:
-search-dir /opt/cray/pe/pmi/5.0.12/lib64

amplxe-gui r000ah

- Needs X connection
- I copied the result to my local system and ran the GUI there.



10

Full GUI screenshot
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Initial Grid and Timeline

Region of interest

Link with –dynamic and 
automatically bucket time by 
app/MPI/OpenMP/vmlinux

Initialization can skew 
results.  Zoom in or use 
_itt_pause/_itt_resume Initialization
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Vtune Data Collection

Theory of operation
• -collect advanced-hotspots uses 3 fixed counters: instructions retired, thread cycles (at 

actual frequency), and reference cycles (at nominal fixed frequency, 1.3GHz on Theta)
• Each event is programmed to interrupt every N occurrences and a sample with the 

timestamp, instruction pointer,  process/thread id, and hardware thread is recorded.
• Useful metrics: elapsed time, time running vs. halted, frequency ratio, instructions/cycle
• Yields a statistical profile. View with GUI or command-line reports

Avoid pain points
• You don’t need data for every MPI node. Node 0 is usually enough.
• Collect for the whole system with one amplxe-cl instance, the driver does it anyway and the 

overhead is low with SEP driver.
• Collect only the interesting bits. Use __itt_resume()/__itt_pause() and –start-paused. You 

probably don’t need all the iterations.
• Finalize outside of job run.
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Parallel Performance and Imbalance

• Select grouping with thread on top, choose one master and one slave thread, filter in by 
selection, then switch grouping.

• Time spent by the slave in libiomp5.so is equal to time spent by the master in libmpich.
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Load Imbalance

• Elapsed time is determined by longest executing thread
• Threads that finish work early spin-wait in OpenMP.
• Threads doing MPI may spin wait waiting for remote sender
• We can see this by comparing times for each thread in each module
• Vtune grouping lets you do this in the GUI but it is hard to compare many 

threads
• One good technique is a pivot table: threads vs. modules.
• Generate a csv file with amplxe-cl –report and import into spreadsheet or 

use python+pandas.
• May need other tools for global MPI imbalance, then zero in on slowest node 

with vtune
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Pivot Table Example
﻿ amplxe-cl –report hw-events –r result -group-by=package,cpuid,core,thread,function \

-format=csv -csv-delimiter=comma -inline-mode=off -time-filter 37:47  >file.csv

Thread miniFE.x libiomp5.so libmpich_intel.so.3.0.1 vmlinux
miniFE.x	(TID:	40799) 9,854,000,000 169,000,000 2,782,000,000 117,000,000
miniFE.x	(TID:	40794) 9,893,000,000 234,000,000 2,730,000,000 65,000,000
miniFE.x	(TID:	40798) 10,127,000,000 26,000,000 2,626,000,000 130,000,000
miniFE.x	(TID:	40797) 10,088,000,000 156,000,000 2,587,000,000 78,000,000
miniFE.x (TID:	40800) 10,023,000,000 169,000,000 2,535,000,000 182,000,000
miniFE.x	(TID:	40796) 10,205,000,000 78,000,000 2,509,000,000 130,000,000
miniFE.x	(TID:	40801) 10,101,000,000 247,000,000 2,431,000,000 130,000,000
OMP	Master	Thread	#0	(TID:	40828) 12,454,000,000 65,000,000 78,000,000 91,000,000
miniFE.x	(TID:	41125) 9,828,000,000 2,938,000,000 156,000,000
OMP	Worker	Thread	#6	(TID:	41158) 9,828,000,000 2,912,000,000 182,000,000
miniFE.x	(TID:	41117) 10,179,000,000 2,496,000,000 247,000,000
miniFE.x	(TID:	41124) 10,114,000,000 2,483,000,000 325,000,000
miniFE.x	(TID:	41114) 10,231,000,000 2,457,000,000 234,000,000

• 13 out of 64 threads shown, others similar. Entries are reference clocks (elapsed time). Sorted by MPI clocks then by OMP clocks. MPI 
threads on the top. Small load imbalance in app, lots of spin time in slave threads due to MPI time in master (except 0).

• Master thread 0 is a major laggard, see next slide
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What’s up with master thread 0?

Slow performance of master thread 0 was a surprise (Honest!). Perfect 
opportunity to teach and learn!

Diagnose using vtune filtering and grouping. We want to compare two hardware 
contexts that are running master (MPI) threads.

1. Add custom grouping thread/hw-context/function and find which core 
master thread 0 is on (cpu 0) and another master thread (cpu 8)*

2. Switch to package/hw-context grouping and select 0 and 8 and filter in.

3. Add custom grouping hw-context/Module and switch to that

4. Filter range on timeline (only if not using pause/resume API).
* We already knew this from aprun but good practice
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CPU 0 vs. CPU 8
cpu_0 and cpu_8 execute 
same number of instructions 
in miniFE.x but cpu_0 uses 
3.5e9 more clockticks. No 
other activity on cpu_0. Why 
is it so slow?

I finally remember:
There are other threads on 
the same core as CPU 0. Let’s 
look at them.

Switch to core/hw
context/module grouping and 
look at core 0
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Core 0
OS CPU 64 on core 0 
executes for 4.7e9 
clockticks in the OS, 
greatly slowing down 
OS CPU 0, also on core 
0.

Possible remedy: avoid 
core 0 (or even tile 0):
aprun –r 1 (?)

With automated pivot 
tables we would have 
seen this immediately.
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Summary of Parallel Analysis

Look at time spent per-thread, that determines elapsed time.

Vtune filtering and grouping is very powerful for ad-hoc analysis.

Getting threads side-by-side to compare in the vtune gui is hard, using the trick 
of selecting two threads with different behaviors helps.

Pivot tables summarize thread vs. module/function behavior well for large 
numbers of threads, make it easier to spot groups of threads with unique 
behavior (serial time, MPI time, systemic load imbalance, misbehaving cores).

Pivot tables are useful for lots of other tasks such as checking for correct 
affinity to HW contexts and unexpected noise; automating it with 
python+pandas is a promising approach.
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Processor Performance

Standard metric is retired Instructions Per Cycle (IPC)

• Intel® Xeon Phi™ processor max is 2 IPC per core

• vtune displays the reciprocal CPI

• Computed as  ∑ "#$%&'(%")#$�
+,-+./012
∑ (3(45$�
+,-+./012

• instructions == INST_RETIRED.ANY cycles == CPU_CLK_UNHALTED.THREAD

Note: IPC per core depends on how many HW threads per core (nHT) are running:

𝐼𝑃𝐶()&5 = 𝐼𝑃𝐶%:&5;<*nHT

𝐶𝑃𝐼()&5 = 𝐶𝑃𝐼%:&5;</nHT

Vtune always displays 𝐶𝑃𝐼%:&5;<

This is why all scaling graphs should be in 
terms of cores, not threads, and should show 
the number of threads per core used.
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Analyzing CPI

There are two approaches to analyzing CPI:

1. Top-down analysis. This attempts to break the instruction time into categories 
reflecting the hardware pipeline. Vtune supports this with                                           
–collect general-exploration .

2. Looking for typical contributors to CPI by inspection and by computing specific 
metrics.

In HPC, memory stalls are usually the biggest contributor to CPI. Here we look 
specifically at L2 input bandwidth for KNL and compare to peak values (~380 GB/sec 
in flat mode for 7250 68-core part).
 amplxe-cl -collect-with runsa –knob event-config=\
CPU_CLK_UNHALTED.REF_TSC:sa=13000000,CPU_CLK_UNHALTED.THREAD:sa=13000000,\
INST_RETIRED.ANY:sa=13000000,L2_REQUESTS.MISS,L2_PREFETCHER.ALLOC_XQ
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L2 BW Vtune View

Paste it into a spreadsheet...

(cont)

(cont)
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L2 Input Bandwidth
Loop

Event	or	metric matvec daxbpy	#1 daxbpy #2
INST_RETIRED.ANY 461,318,000,000 7,839,000,000 3,549,000,000
CPU_CLK_UNHALTED.THREAD 630,448,000,000 39,351,000,000 21,099,000,000
CPU_CLK_UNHALTED.REF_TSC 584,493,000,000 37,570,000,000 19,539,000,000
L2_REQUESTS.MISS 1,896,828,452 273,404,101 127,001,905
L2_PREFETCHER.ALLOC_XQ 27,135,899,380 2,152,050,633 1,075,175,257
cpi 1.367 5.020 5.945
L2	lines	in 29,032,727,832 2,425,454,734 1,202,177,162
Elapsed	cycles 9,132,703,125 587,031,250 305,296,875
bytes/cycle 203.5 264.4 252.0
GB/sec 264.5 343.8 327.6

L2 lines in = demand misses plus hardware prefetches
1 line = 64 bytes
Elapsed cycles = reference clocks / active threads
Multiply bytes/cycle by 1.3GHz to get GB/sec

Last two loops are close to peak bandwidth
Let’s look at the assembly
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matvec

Indirection resulting in vgatherdpdz
limits bandwidth
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daxpby

contiguous memory streams 
result in near peak 
bandwidth
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Other Metrics

Use and understand the vtune hardware collection types. They are easy to use 
and have many valuable metrics and displays. You can learn a lot about the 
hardware events and top-down cycle breakdown. Use the tooltips.

Be very aware of overheads and quantization errors due to multiplexing (only 
two hardware events are available so not all events run all the time with the 
complex collection types). Watch for large increases in runtime when using 
vtune.

Don’t be afraid to roll your own analysis. You can directly sample 3 fixed events 
plus two programmable event. Adjust the sample after value to avoid undue 
overhead.
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When am I done?

Achieve high percentage of bandwidth

• Beware of BW bound code that doesn’t need to be (e.g., fails to optimize for reuse in L2 cache)

• Lack of vectorization, lack of streaming stores, missing SW prefetches may limit BW

Achieve high IPC/low CPI

• BW bound code will have lower IPC

• Code may be BW bound from L1 or L2 cache as well as from memory.

• Micro-architectural decisions may limit IPC (e.g., some VPU instructions issue on only one port)

• Real dependences may limit IPC (one instruction needs to wait for another’s result)

• Code may be front-end bound (instruction fetch and decode, branch prediction)

Ultimately you need excellent understanding of your algorithm’s BW requirements and careful 
inspection of generated code to understand and eliminate micro-architectural bottlenecks.
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References

Vtune reference:
• https://software.intel.com/en-us/amplifier_help_linux

Hardware counters:
• https://software.intel.com/en-us/articles/intel-sdm (Volume 3B Section 19.4)
• https://software.intel.com/en-us/articles/intel-xeon-phi-x200-family-processor-

performance-monitoring-reference-manual
Recommended collection types: 

advanced-hotspots, general-exploration, memory-access, hpc-performance
collect-with runsa –knob event-config=hw-event-list
sep –el to get the hw-event-list

Pause/resume:
#include <ittnotify.h>, use ittnotify
-I/opt/intel/vtune_amplifier_xe/include –L/opt/intel/vtune_amplifier_xe/lib64 –littnotify
__itt_resume()/__itt_pause()/-start-paused
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Optimization example: CCS-QCD

QCD code written by Dr. Ken-Ichi Ishikawa, Hiroshima University

Highly optimized* for Intel® Xeon Phi™ gen 1 (formerly known as KNC) on 
Tsukuba COMA, tuned for gen 2 for Oakforest-PACS

Optimizations: MCDRAM, tiling for cache, manual prefetching, intrinsics, aligned 
memory allocation, cooperative threading

Optimization Dslash
operator 
GF/sec

Full
Solver 
GF/sec

DDR only 126 96
MCDRAM, no SW prefetch 393 326
MCDRAM, SW prefetch 542 424

24^3x96 problem size
68 cores,1.4GHz
All values in 
Gflops/Second
nohz_full boot

* https://conference.ippp.dur.ac.uk/event/470/session/14/contribution/44

Recompilation alone is 
insufficient
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Optimizations for Intel® Xeon Phi™ processor

MCDRAM for bandwidth-bound problems

Latency hiding:

• OOO provides some latency hiding (72 uops deep)

• HT (multiple threads per core); 2-level cooperative threading for many problems

• Manual prefetching for  irregular or semi-regular access patterns (e.g. indirection, 
tiled loop nests)

Vectorization:

• Instruction selection: AVX-512 ERI for faster exp, recip; limited precision compiler 
flags; #pragma nontemporal for non-temporal stores

• AVX-512 CDI for various idioms using vector scatter
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Uncore

• MCDRAM and DDR reads and writes

• MCDRAM-as-cache HIT, MISS

Core/Tile

• Retired loads and stores

• Retired L1, L2, uTLB, and dTLB misses

• Instructions, reference and thread cycles 
(architectural PMU)

• Branch prediction, I$ and iTLB misses

• Front-end stall cycles (instruction decode)

• Retired packed and scalar SIMD operations 
(proxy for vectorization quality)

• L2 cache line traffic

Performance analysis: use HW events
Classes of hardware performance events
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Module-level HW profile

Lots of spin time
Low kernel time (good)

Seems high;
1.0 is min (best possible) for
2 threads/core
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Vtune tips

Vtune is a quick way to get most of the data you need.

Limit your vtune collection time to 20s or so on one node during program 
steady-state: either use __itt_pause/__itt_resume or collect for 20s while 
program is running:

amplxe-cl –collect advanced-hotspots –analyze-system –d 20

-collect general-exploration and –collect memory-access are both useful for 
seeing how well the hardware is being used.

Vtune has lower overhead than perf record, especially on many small cores. 
Finalization can be slow; limiting collection time helps a lot.
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Non-sampling approaches

Instrument your code

• Collect core counters for all threads

• Use sep –count and RDPMC

• Jevents

• Add them all together

• Collect uncore events separately with linux perf

• Consider normalizing per something meaningful to your code, e.g., per solver iteration

Use emon to collect counters over time

• Lower overhead than sampling

• Correlation to application is over time, not to source code



36

Fine-grained analysis example: CCS-QCD

Metric Formula Value
L1 hit rate MEM_UOPS_RETIRED.L1_MISS_LOADS/

MEM_UOPS_RETIRED.ALL_LOADS
96.85%

L2 hit rate MEM_UOPS_RETIRED.L2_HIT_LOADS/
(MEM_UOPS_RETIRED.L2_HIT_LOADS+MEM_U
OPS_RETIRED.L2_MISS_LOADS)

96.72%

IPC/core 2*INST_RETIRED.ANY/
CPU_CLK_UNHALTED.THREAD

1.16

MCDRAM Read BW *Memory_reads/Time 317GB/
Sec

Per-core L2 input BW 64*(L2_PREFETCHER.ALLOC_XQ+
L2_REQUESTS.MISS)/Time

341GB/
Sec

Instrument only the Dslash operator
Use RDPMC to read the counters

* Elapsed time can be computed several ways, e.g., CPU_CLK_UNHALTED.REF_TSC / #threads,
assuming threads are all active during the measured region.

With 2 threads/core

Rule of thumb: 360 GB/sec 
aggregate max L2 input BW
Implies this code is bandwidth 
bound
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