
©	2017	Arm	Limited	1

Debugging and Profiling your HPC Applications
Srinath Vadlamani, Field Application Engineer
srinath.vadlamani@arm.com

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	2

About	this	talk
Techniques	not	tools

• Learn	ways	to	debug	and	profile	your	code

Use	tools	to	apply	techniques

• Debugging	with	Allinea DDT
• Benchmarking	with	Allinea	Performance	Reports	
• Profiling	with	Allinea	MAP	
• Go	to	www.allinea.com/trials

Tools	are	available	on	the	ATPESC	machines
Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	3

Motivation
HPC	systems	are	finite	

• Limited	lifetime	to	achieve	most	science	possible

• Sharing	a	precious	resource	means	your	limited	allocation	needs	to	be	used	well

Your	time	is	finite
• PhD	to	submit

• Project	to	complete

• Paper	to	write

• Career	to	develop

Doing	good	things	with	HPC	means	creating	better	software,	faster
• Being	smart	about	what	you’re	doing

• Using	the	tools	that	help	you	apply	smart	techniques Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	4

Bioinformatics
Discover Assembly
3x speedup
EC2

Deep Learning
Torch + DeepMind
5.3x speedup
Intel Xeon Phi (KNL)

Fluid Dynamics
HemeLB blood flow
16.8x capability boost
50k core crash fixed

Real-world	example

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	5

Debugging	in	practice…

Run

Crash

HypothesisInsert	print	
statements

Compile

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	6

Optimization	in	Practice

Insert	timers

Run	code

Analyze
performance	

result

Change	code

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	7

About	those	techniques…
“No-one	cares	how	quickly	you	can	compute	the	
wrong	answer”

•Old	saying	of	HPC	performance	experts

Let’s	start	with	debugging	then…

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	8

Some	types	of	bug

Bohrbug Steady,	dependable	bug

Heisenbug Vanishes	when	you	try	to	debug	(observe)

Mandelbug Complexity	and	obscurity	of	the	cause	is	so	great	that	it	
appears	chaotic

Schroedinbug First	occurs	after	someone	reads	the	source	file	and	deduces	
that	the	code	should	have	never	worked,	after	which	the	
program	ceases	to	work	until	fixed

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	9

Debugging
The	art	of	transforming	a	broken	program	to	a	working	one:

Debugging	requires	thought	– and	discipline:
• Track	the	problem

• Reproduce

• Automate	– (and	simplify)	the	test	case

• Find	origins	– where	could	the	“infection”	be	from?

• Focus	– examine	the	origins

• Isolate	– narrow	down	the	origins

• Correct	– fix	and	verify	the	testcase is	successful

Suggested	Reading:
• Andreas	Zeller,	“Why	Programs	Fail”,	2nd	Edition,	2009	

What	you	will	read:
• Crowd	sources like	stack	overflow

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	10

Popular	techniques

Automation
• Test	cases
• Bisection	via	
version	control

Observation
• Print	
statements

• Debuggers

Inspiration
• Explaining	the	
source	code	to	
a	duck

Magic
• Static	analysis
• Memory	
debugging

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	11

Solving Software Defects
Who	had	a	rogue	behavior ?

• Merges	stacks	from	processes	and	threads

Where	did	it	happen?	
• leaps	to	source

How	did	it	happen?	
• Diagnostic	messages

• Some	faults	evident	instantly	from	source	

Why	did	it	happen?
• Unique	“Smart	Highlighting”

• Sparklines comparing	data	across	processes

Run
with	Allinea	tools

Identify	
a	problem

Gather	info
Who,	Where,	
How,	Why

Fix

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	12

Favorite Allinea DDT Features for Scale

Parallel	stack	view Automated	data	
comparison:	sparklines Parallel	array	searching

Step,	play,	and	
breakpoints Offline	debugging

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	13

6	steps	to	help	improve	performance

Get	a	realistic	
test	case

Profile	your	
code

Look	for	the	
significant

What	is	the	
nature	of	the	
problem?

Apply	brain	to	
solve Bottle	It

Aug.	8,	ATPESC_2017Logging	like	an	experiment	is	useful.



©	2017	Arm	Limited	14

Bottling it…
• Lock in performance once you have won it
• Save your nightly performance 
• Tie your performance results to your continuous integration server

• Lock in the bug fixes
• Save the test cases
• Tie the test cases to your continuous integration server

• Regression tests do help you from regressing!!!

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	15

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	16

How	The	Tools	Fit…

Forge

Performance	
Reports
Measure

DDT
Debug

MAP
Profile	and	Optimize

Demand	for	software	
efficiency

Pull	for	MAP	to	develop	
performance	fix

Leads	to	DDT	to	
understand	and	fix

Debug,	optimize,	edit,	
commit,	build,	repeat…

Demand	for	performance	
optimization

Demand	for	debugging

Demand	for	developer	
efficiency

Leads	to	MAP	to	optimize	
performance

Version	Control

Continuous	Integration

Open	Interfaces
(eg.	JSON	APIs)

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	17

You can teach a man to fish
But first he must realize he is hungry

Image © Kanani CC-BY

How to help scientific developers best?

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	18

caption

… this is your code on “–O0”, ie. no optimizations

Communicate the benefits of optimization
Show, don’t tell…

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	19

caption “Vectorization, how does it work?”

Show performance they understand

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	20

caption

Out-of-
order Pipelined

Time	per	
retired	

instruction

Communicating at the right level

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	21

caption
+	simple,	actionable	advice

Explaining performance at the right level

Aug.	8,	ATPESC_2017

Compiler	advice	is	your	friend.



©	2017	Arm	Limited	22

caption

Vectorization, MPI, I/O, memory, energy…

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	23

caption

Accelerator support…

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	24

Application	Development	Workflow

Profiling

Optimization

ExecutionDebugging

Coding

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	25

Hello Allinea Forge!

Observe	and	debug	your	code	step	by	step

Flick	to	Allinea	DDT
Common	interface	and	settings	files	

Increasing	memory	usage?	Memory	leak!
Workload	imbalance?	Possible	partitioner bug!

Allinea	MAP	to	find	performance	bottleneck

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	26

Linux

OS/X

Windows

Multiple	hop	SSH

RSA	+	Cryptocard

Uses	server	license

HPC	means	being	productive	on	remote	machines

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	27

Small	data	files

<5%	slowdown

No	instrumentation

No	recompilation

MAP	in	a	nutshell

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	28

Above all…
Aimed	at	any	performance	problem	that	matters

• MAP	focuses	on	time

Does	not	prejudge	the	problem
• Doesn’t	assume	it’s	MPI	messages,	threads	or	I/O

If	there’s	a	problem..
• MAP	shows	you	it,	next	to	your	code

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	29

Scaling issue – 512 processes

Simple	fix…	reduce	periodicity	of	output Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	30

Deeper insight into CPU usage
Runtime	of	application	still	unusually	slow

Allinea	MAP	identifies	vectorization close	to	zero

Why?			Time	to	switch	to	a	debugger!
Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	31

While	still	connected	to	the	server	we	switch	to	the	debugger

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	32

It’s	already	configured	to	reproduce	the	profiling	run

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	33

Today’s Status on Scalability
Debugging	and	profiling

• Active	users	at	100,000+	cores	debugging

• 50,000	cores	was	largest	profiling	tried	to	date	(and	was	Very	Successful)

• …	and	active	users	with	just	1	process	too

Deployed	on	
• NERSC	Cori,	ORNL’s	Titan,	NCSA	Blue	Waters,	ANL	Mira	etc.

• Hundreds	of	much	smaller	systems	– academic,	research,	oil	and	gas,	genomics,	etc.

Tools	help	the	full	range	of	programmer	ambition
• Very	small	slow	down	with	either	tool	(<	5%)

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	34

Five	great	things	to	try	with	Allinea	DDT

The	scalable	print	
alternative Stop	on	variable	change Static	analysis	warnings	

on	code	errors

Detect	read/write	
beyond	array	bounds

Detect	stale	memory	
allocations

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	35

Six	Great	Things	to	Try	with	Allinea	MAP

Find	the	peak	memory	
use Fix	an	MPI	imbalance Remove	I/O	bottleneck

Make	sure	OpenMP	
regions	make	sense Improve	memory	access Restructure	for	

vectorization

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	36

Getting	started	on	Theta
Install	local	client	on	your	laptop

• www.allinea.com/products/forge/downloads	

– Linux	– installs	full	set	of	tools

– Windows,	Mac	– just	a	remote	client	to	the	remote	system

• Run	the	installation	and	software

• “Connect	to	remote	host”

• Hostname:	

– username@theta.alcf.anl.gov

• Remote	installation	directory:	/soft/debuggers/forge-7.0.6-2017-08-07/
• Click	Test

Congratulations	you	are	now	ready	to	debug	Theta.

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	37

Hands	on	Session
Use	Allinea	DDT	on	your	favorite	system	to	debug	your	code	– or	example	codes

Use	Allinea	MAP	or	Performance	Reports	on	Cooley	to	see	your	code	performance

Use	Allinea	DDT	and	Allinea	MAP	together	to	improve	our	test	code
• Download	examples	from	www.allinea.com - Trials	menu,	Resources	– “trial	guide”

Aug.	8,	ATPESC_2017



©	2017	Arm	Limited	38

Thank	you	for	your	attention!
Contact:

• support@allinea.com

• support@arm.com

Download	a	trial	for	ATPESC	(or	later)
• http://www.allinea.com/trials

Aug.	8,	ATPESC_2017


