
Software Lifecycle with an Example, Community Impact

Presented to
ATPESC 2017 Participants

Anshu Dubey
Computer Scientist, ANL
Q Center, St. Charles, IL (USA)
Date 08/09/2017

ATPESC 2017, July 30 – August 11, 20172

Simplified Schematic of Science Through Computation

2

Many stages in
the lifecycle have
components that
may themselves

be under
research => need

modifications

Numerical
solvers

Validation

Physical World

Equations

Difference
equationsImplementation

Model

Discretize

Verify accuracy
stability

Model
fidelity

Model
fidelity

Domain expert

Applied Mathematician

Domain expert

Applied
Mathematician

Domain
expert

Performance

Software
Engineer
optimization
experts

Target phenomena

Correctness, stability
convergence

Mathematical Model

Approximations

Numerical
Algorithmsvalidation

calibration

One View of Lifecycle

Numerical
library

validation

ATPESC 2017, July 30 – August 11, 20174

Requirements

Design Framework

Implement

Test

Maintain

Augment

Model

API

Design, develop

Validate

Integrate

Infrastructure Capabilities

Coupling Between Infrastructure and Physics

ATPESC 2017, July 30 – August 11, 20175

• Software architecture and process design is an overhead
– Value lies in avoiding technical debt (future saving)
– Worthwhile to understand the trade-off

• The target of the software
– Proof-of-concept
– Verification
– Exploration of some phenomenon
– Experiment design
– Product design
– Analysis
– Other …

• Target should dictate the rigor of the design and software process
– Cognizant of resource constraints

5

In this lecture focus is on the needs of large multicomponent codes used for exploration and
experiment design. Others need a subset.

Architecting Scientific Codes: Taking Stock

ATPESC 2017, July 30 – August 11, 20176

Architecting Scientific Codes: Desirable Characteristics

• Extensibility
– Most uses need additions and/or customizations

• Portability
– Platforms change
– Even the same generation platforms are different

• Performance and Performance portability
– All machines need to be used well

• Maintainability and verifiability
– For believable results

6

ATPESC 2017, July 30 – August 11, 20177

• Extensibility and maintainability require
– Well defined structure and modules
– Encapsulation of functionalities
– Understanding data ownership

• Arbitration among different functionalities
• Performance requires

– Increasing spatial and temporal locality of data
– Minimizing data movement
– Maximizing scalability

• Portability requires general solutions that work across platforms
– Performance portability requires that they work efficiently without significant manual

intervention across platforms
• Verifiability requires

– Verifiable output for critical components
– Tests at various granularities

7

Architecting Scientific Codes : Implications

ATPESC 2017, July 30 – August 11, 20178

• Where it gets messy
– Well defined structure and modules

• Same data layout not good for all solvers
• Many corner cases (branches, other special handling)

– Encapsulation of functionalities
• Necessary lateral interactions

– Minimization of data movement
• Necessity of transposition / other form of copy

– Maximization of locality and scalability
• Solvers with low arithmetic intensity but hard sequential dependencies
• Proximity and work distribution at cross purposes

8

Architecting Scientific Codes : The Reality

ATPESC 2017, July 30 – August 11, 20179

Architecting Scientific Codes: Taming Complexity
• Differentiate between types of functionalities in the code

– Model and the numerics may be subject of research
• May need updates and extensions fairly regularly

– Discretizations and other support services are more stable
• I/O, parameter management etc

• Handle them differently
– Good to hide implementation complexity from variable sections

• Data structure and movement management
• Where possible treat mathematically complex sections as client code

• First step in separation of concerns (more later)

9

ATPESC 2017, July 30 – August 11, 201710

Taming Functional Complexity

• Identify logically separable functional units of computation
– Infrastructure
– Solvers
– Monitors

• Encode the logical separation (modularity) into a framework
– Infrastructure units being the backbone
– Handle all global scope data

• Separate what is exposed from what is private to the
module

• Define interfaces through which the modules can interact
with each other

ATPESC 2017, July 30 – August 11, 201711

Example from FLASH : Five Categories of Units

• Infrastructure – Grid, I/O ….
– Grid owns discretized mesh, state

variables
– Manages decomposition and scaling

• Physics units – hydro, gravity ….
– Implement specific operators
– Request Grid for data to operate on
– Do not differentiate between whole

domains and a subset of domain

11

• Monitoring units – logfile,
timers …
– Monitor the progress and

performance
• Driver

– Implement operator splitting and
time integration

• Simulation
– Unique to FLASH, where the

application is put together
– Also where customizations occur

ATPESC 2017, July 30 – August 11, 201712

Example of a Unit – Grid (From FLASH)

Grid

GridSolversGridMainGridParticles

UG paramesh

PM4_packageUG paramesh

Sieve PttoPt

PM4dev_
package

GridBC

GPMapToMesh GPMove

etc…

ATPESC 2017, July 30 – August 11, 201713

Example of Unit Design
• Non trivial to design several of the physics units in ways that meet modularity and performance

constraints.

• Eos (equation of state) unit is a good example
– Individual mesh points are independent of each other
– There are several reusable calculations
– Other physics units demand great flexibility from it

• single grid point
• only the interior cells, or only the ghost cells
• a row at a time, a column at a time or the entire block at once
• different grid data structures, and different modes at different times

– Implementations range from simple ideal gas law to table look up and iterations for degenerate
matter and plasma, with widely differing relative contribution in the overall execution time

– Relative values of overall energy and internal energy play role in accuracy of results
– Sometimes several derivative quantities are desired as output

ATPESC 2017, July 30 – August 11, 201714

Preparing For Future: The New Challenges
• Last two decades machine model

stable and uniform
– Clusters: Distributed memory machines
– Many algorithmic optimizations applied

across the board
– Portability often guaranteed

performance portability

• Before that there was another long
term stable model
– Vector machines
– Transition from vector to parallel

• Codes still relatively small
• Move from one stable paradigm to another
• Code lifecycle >>> transition time

14

• Now there is explosion in
heterogeneity
– Machines, models and solvers
– Portability is not the same as

performance portability
– Optimal for one may be terrible for

another

ATPESC 2017, July 30 – August 11, 201715

Preparing for future :Legacy challenges

• Much larger codes
– Transition time much longer than before
– Platform life <<< code lifecycle
– Platform life ~= transition time
– Same generation has different platforms

• No single machine model to target
• Need to deepen parallel hierarchy and lift abstraction

– Let abstraction and middle layers do the heavy lifting for portability
– Many ideas, little convergence.

15

ATPESC 2017, July 30 – August 11, 201716

Overarching Theme

• Differentiate between physical view and virtual view

• Simpler world view at either end enables separation of concerns

• Hard-nosed trade-offs

ATPESC 2017, July 30 – August 11, 201717

Real view : A
whole domain
with many
operators

Functional
decomposition

Virtual view :
domain sections
as stand-alone
computation unit

Virtual view
collection of
components

Memory
access and
compute
optimization

Parallelization
and scaling
optimization

Spatial
decomposition

Example: PDE’s

Customizations can be hidden under the virtual views as needed

Flexibility Vs
Performance

ATPESC 2017, July 30 – August 11, 201718

Real view : A
whole domain
with many
operators

Functional
decomposition

Virtual view :
domain sections
as stand-alone
computation unit

Virtual view
collection of
components

Memory
access and
compute
optimization

Parallelization
and scaling
optimization

Spatial
decomposition

Example: PDE’s

Abstraction at
solver level

code
transformation

Fusing
Functions

Dynamic
SchedulingWrite solvers as independent tasks

Explicitly call out dependencies
Expose fusion possibilities

ATPESC 2017, July 30 – August 11, 201719

Hierarchical Decomposition
Real View Virtual View

Tiling
• Hierarchy of tiling:

• Larger non-
overlapping tile maps
to coherence domain

• Smaller overlapping
tile exposes more
parallelism

• Parameterize end-
points, shape tiles as
needed

ATPESC 2017, July 30 – August 11, 201720

Asynchronous Execution

• Barriers are the easy way to reconcile
dependencies
– Take away the option of pipelining and/or overlapping

• With hierarchical spatial and functional
decomposition rich collection of tasks
– Articulate dependencies explicitly
– Let the framework find the unit of computation that is ready

and hand it to client code with all the necessary data
• Under the hood, framework can be managing dependencies
• If client code assumes not-in-place update each of the tiles is a

task with neighborhood dependencies

• Can be made into build or run environment
specifications through appropriate parameterization

ATPESC 2017, July 30 – August 11, 201721

Putting it all Together

• The construction of operators
– Express computation in the form of stencil operators or other

appropriate abstraction
– Specify the part of the domain, and the conditions under which

the operators apply
• Use masks to take care of branching

• Mix-mode parallelism
– Parameters to control the degree of tiling or other forms of mix-

mode parallelism
• Could be handed to the compiler when technology arrives

– Framework forms the data containers
• Dynamic tasking

– Smarter iterators that are aware of mix-mode parallelism and
dependencies

– The iterating loops give up control and do while loops

ATPESC 2017, July 30 – August 11, 201722

Software Process Design : Taking stock

• Different needs for different scope projects
• Blindly applying processes is bad for productivity
• Rigor and extent of the process should reflect the needs

– Never lose sight of overhead and trade-offs
– Primary focus is productivity
– If a process has no advantage, increases burden, drop it
– If you incur technical debt from ignoring process, make sure to adopt one

• Small teams need few formal practices, large teams need more, diverse teams need
most

• Some processes should be there irrespective of the size
– Repository
– Strong verification
– Algorithm and implementation documentation

22

ATPESC 2017, July 30 – August 11, 201723

Map Team Needs to Process Scope: Small Projects
• Software for internal use of a small academic team

– The minimum set described earlier

• Software for internal use of medium to large team: no public release
– Simple software architecture

• Encapsulation and data arbitration
• Interfaces, coding standards

– Ongoing verification (automatic testing)
– Some usage documentation
– Range of validity documentation
– Additional policies

• Testing responsibilities
• Contribution policies

23

ATPESC 2017, July 30 – August 11, 201724

Map team needs to process scope:Large software with
many interoperating moving parts

• Software architecture
– Separation of concerns
– Well defined APIs
– Infrastructure backbone

• Software process : all from previous slide + a few more
– Release and licensing

• Frequency of release
• Testing for release
• Distribution model

– User support, maybe training
– Contribution policies

• Gatekeeping
• Resolution of tension between IP protection and open source

24

ATPESC 2017, July 30 – August 11, 201725 25

q Scientists can focus on developing for their algorithmic
needs instead of getting bogged down by the
infrastructural development

q Graduate students do not start developing codes from
scratch
q Look at the available public codes and converge on

the ones that most meet their needs
q Look at the effort of customization for their

purposes
q Select the public code, and build upon it as they need

Community Codes : Motivation

Important to remember that they still need to understand the components
developed by others that they are using, they just don’t have to actually develop

everything themselves. And this is particularly true of pesky detailed
infrastructure/solvers that are too well understood to have any research

component, but are time consuming to implement right

ATPESC 2017, July 30 – August 11, 201726 26

q Researchers can build upon work of others and get
further faster, instead of reinventing the wheel
q Code component re-use
q No need to become an expert in every numerical

technique
q More reliable results because of more stress tested

code
q Enough eyes looking at the code will find any errors

faster
q New implementations take several years to iron

out the bugs and deficiencies
q Different users use the code in different ways and

stress it in different ways
q Open-source science results in more reproducible

results
q Generally good for the credibility

ATPESC 2017, July 30 – August 11, 201727

Models: “Cathedral and the Bazaar”, Eric S. Raymond

• The Cathedral model
– Code is available with each software release
– Development between releases is restricted to an

exclusive group of software developers.
• GNU Emacs and GCC are presented as examples.

– Central control models

• The Bazaar model
– Code is developed over the Internet in view of the public.
– Raymond credits Linus Torvalds, leader of the Linux kernel

project, as the inventor of this process.
– Distributed control models

ATPESC 2017, July 30 – August 11, 201728

Scientific codes
• Mostly follow the cathedral model
• Many reasons are given, some valid, others spring from bias
• The valid ones

– The code quality becomes hard to maintain
– Hard to find financial support for gate keeping and general maintenance
– Typical user communities are too small to effectively support the bazaar

model
– The reward structure for majority of potential contributors is incompatible

• The not so valid ones
– Codes are far too complex
– Competitive advantage from owning the code

The real reason many times is simply the history of the development of the code
and the pride of ownership

ATPESC 2017, July 30 – August 11, 201729

The Benefits of the Bazaar model

• Given a large enough beta-tester and co-developer base, almost every problem will be
characterized quickly and the fix will be obvious to someone
– More varied test cases that demonstrate bugs
– Debugging can be effectively parallelized.
– The infrastructure limitations are quickly exposed

• Capability addition is rapid, codes can do more
– A corollary to that is a good extensible design
– Users always want something more and/or something different from what is available
– Greater knowledge pool operating together, more possibility of innovation

ATPESC 2017, July 30 – August 11, 201730

The Pitfalls of the Bazaar model

• Many of the benefitting reasons can equally easily go the other way
– Bigger knowledge pool can also mean more conflicting opinions
– Prioritizations can become extremely challenging

• Gatekeeping can become a huge challenge for maintaining software
quality
– Scientific codes have their own peculiarities for verification and validation that

can be extremely challenging
– The orchestration of capability combination is harder when there is physics

involved because many times it just won’t play well together

ATPESC 2017, July 30 – August 11, 201731

Scientific Community Codes Can Follow Several Different
Paths :

• The most common path
– Someone wrote a very useful piece of code that several people in the group

started using
– Collaborations happened
– People moved and took the code with them
– Critical mass of users achieved, code becomes popular

• No focused effort to build the code
– Usually very little software process involved
– For the whole code, limited shelf life

ATPESC 2017, July 30 – August 11, 201732

A More Sustained Path

• Sometimes enough like minded people take it a step further
– Some long term planning resulting in better engineered code
– Thought given to extensibility and for future code growth
– As the code grows so does its community supported model

• This model is still relatively rare.
– The occurrences are increasing

ATPESC 2017, July 30 – August 11, 201733

A Desirable Path

• Explicit funding to build a code for a target community
• Implied support for the design phase
• The outcome is expected to be long lasting and well engineered
• The occurrences are even rarer
• And it is getting increasingly harder
• When it works outcome is more capable and longer lasting codes

ATPESC 2017, July 30 – August 11, 201734 34

Some Flourishing Communities

qCommunity/open-source approach more common in areas
which need multi-physics and/or multi-scale

qA visionary sees the benefit of software re-use and releases
the code

qSophistication in modeling advances more rapidly in such
communities

qOthers keep their software close for perceived competitive
advantage
qRepeated re-invention of wheel
qGeneral advancement of model fidelity slower

Let us examine what does it take to build a community code

ATPESC 2017, July 30 – August 11, 201735 35

Community Building
• Popularizing the code alone does not build a community
• Neither does customizability – different users want different

capabilities

So what does it take ?
• Enabling contributions from users and providing support for

them
• Including policy provisions for balancing the IP protection

with open source needs
• Relaxed distribution policies – giving collective ownership to

groups of users so they can modify the code and share
among themselves as long as they have the license

More inclusivity => greater success in community building
An investment in robust and extensible infrastructure, and a strong
culture of user support is a pre-requisite

ATPESC 2017, July 30 – August 11, 201736 36

Contribution Policies

• Balancing contributors and code distribution
needs

• Contributor may want some IP protection

• Maintainable code requirements
– The minimum set needed from the contributor

• Source code, build scripts, tests, documentation

• Agreement on user support
– Contributor or the distributor

• Add-ons: components not included with the
distribution, but work with the code

ATPESC 2017, July 30 – August 11, 201737

Survey of ideas use-cases

IDEAS scientific software productivity project: www.ideas-productivity.org

• Five application codes and four numerical libraries
• All use version control, and all but one use distributed version control
• Builds are evenly divided between GNU make and CMake
• All provide documentation with some form of user’s guide, many use

automated documentation generation tools
• All have testing in some form, a couple do manual regression testing, the

rest are automated
• Roughly half make use of unit testing explicitly
• Majority are publicly available

37

ATPESC 2017, July 30 – August 11, 201738

Summary From community codes
workshop (2012)

http://flash.uchicago.edu/cc2012/

• Codes – FLASH, Cactus, Enzo, ESMF, Lattice QCD code-
suite, AMBER, Chombo, and yt

• Software architecture is almost always in the form of
composable components
– Need for extensibility

• All codes have rigorous auditing processes in place
• Gatekeeping for contributions, though models are different
• All codes have wide user communities, and the

communities benefit from a common highly exercised code
base

38

ATPESC 2017, July 30 – August 11, 201739

Communities headed towards community codes

• Climate modeling
– DOE effort – ACME

• Started in 2014
• Community Model – many groups
• Many practices in place

• Accelerator
– People thinking about it

• Whitepapers
– Objective – avoid duplication, get some convergence,

• Also more believable results

39

ATPESC 2017, July 30 – August 11, 201740

Common Threads
• Open source with a governance structure in place
• Trust building among teams
• Commitment to transparent communications
• Strong commitment to user support
• Either an interdisciplinary team, or a group of people comfortable with

science and code development
• Attention to software engineering and documentation
• Understanding the benefit of sharing as opposed to being secretive about

the code

