Visualization and Analysis of HPC Simulation Data using Vislt 🧐

ATPESC 2017

Argonne Training Program on Extreme-Scale Computing Thursday August 10th, 2017

Cyrus Harrison Lawrence Livermore National Laboratory cyrush@llnl.gov

LLNL-PRES-736355

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

ATPESC 2017 Outline

VisIt Project Introduction (30 min)

{Lunch!}

- Hands-on: (1.5 hours)
 - Guided tour of VisIt
 - Water Flow Simulation Exploration
 - Visualization of an Aneurysm (Blood Flow) Simulation

Tutorial Resources

- Tutorial Materials
 - <u>http://visitusers.org/index.php?title=Vislt_Tutorial</u>

- Tutorial Preparation
 - <u>http://visitusers.org/index.php?title=Tutorial_Preparation</u>
- Vislt Binaries (download Vislt 2.12.3)
 - <u>https://wci.llnl.gov/codes/visit/executables.html</u>
- Example Datasets
 - <u>http://visitusers.org/index.php?title=Tutorial_Data</u>

Tutorial Data Acknowledgements

Aneurysm Simulation Dataset

Simulated using the LifeV (<u>http://www.lifev.org/</u>) finite element solver.

Available thanks to:

 Gilles Fourestey and Jean Favre Swiss National Supercomputing Centre (<u>http://www.cscs.ch/</u>)

Vislt Project Introduction

Visit is an open source, turnkey application for data analysis and visualization of mesh-based data.

- Production end-user tool supporting scientific and engineering applications.
- Provides an infrastructure for parallel post-processing that scales from desktops to massive HPC clusters.
- Source released under a BSD style license.

Pseudocolor plot of Density (27 billion element dataset)

_چ

Vislt supports a wide range of use cases.

Visit provides a wide range of plotting features for simulation data across many scientific domains.

Streamlines / Pathlines

Volume Rendering

Vector / Tensor Glyphs

Molecular Visualization

Pseudocolor Rendering

Parallel Coordinates

VisIt uses MPI for distributed-memory parallelism on HPC clusters.

We are enhancing Vislt's pipeline infrastructure to support threaded processing and many-core architectures.

_چ

Vislt is a vibrant project with many participants.

- The VisIt project started in 2000 to support LLNL's large scale ASC physics codes.
- The project grew beyond LLNL and ASC with research and development from DOE SciDAC and other efforts.
- Visit is now supported by multiple organizations:
 - LLNL, LBNL, ORNL, Univ of Oregon, Univ of Utah, Intelligent Light, ...
- Over 75 person years of effort, 1.5+ million lines of code.

The Vislt team focuses on making a robust, usable product for end users.

- Regular Releases (~ 6 / year)
 - Binaries for all major platforms
 - End-to-end build process script ``build_visit''

User Support and Training

- visitusers.org, wiki for users and developers
- Email lists: visit-users, visit-developers
- Beginner and advanced tutorials
- VisIt class with detailed exercises

Documentation

- Getting Data Into Vislt Manual
- Python Interface Manual
- Users Reference Manual

Vislt class materials

VisIt provides a flexible data model, suitable for many application domains.

Mesh Types

- Point, Curve, 2D/3D Rectilinear, Curvilinear, Unstructured
- Domain Decomposed, AMR
- Time Varying
- Primarily linear element support, limited quadratic element support

Field Types

Scalar, Vector, Tensor, Material Volume
 Fractions, Species

"How do I get my data into VisIt?"

- The *PlainText* database reader can read simple text files (CSV, etc)

 <u>http://visitusers.org/index.php?title=Using_the_PlainText_reader</u>
- Experiment with the visit_writer utility:
 - <u>http://visitusers.org/index.php?title=VisItWriter</u>
- Write to a commonly used format:
 VTK, Silo, Xdmf, PVTK
- Consult the <u>Getting Data Into Visit Manual</u> and its associated <u>source</u> <u>code examples</u>.

VisIt employs a parallelized client-server architecture.

Client Computer Parallel HPC Cluster Vislt Data Data Engine Plugin connection network Vislt MPI Data Data Engine Plugin **Vislt Viewer** Vislt Data Data Engine Plugin (Files or Simulation) **Python** Java Vislt GUI Vislt CLI Clients Clients

Visit automatically switches to a scalable rendering mode when plotting large data sets on HPC clusters.

In addition to scalable surface rendering, VisIt also provides scalable volume rendering.

Vislt's infrastructure provides a flexible platform for custom workflows.

• C++ Plugin Architecture

- Custom File formats, Plots, Operators
- Interface for custom GUIs in Python, C++ and Java

Python Interfaces

- Python scripting and batch processing
- Data analysis via Python Expressions and Queries

In-Situ Coupling

 VisIt's *Libsim* library allows simulation codes to link in VisIt's engine for in situ visualization

VisIt is used as a platform to deploy visualization research.

DOE ASCR Research Collaborations

Research Focus

- Light weight In Situ Processing
- Node Level Parallelism
- Distributed Memory Parallel Algorithms

Scaling research: Scaling to 10Ks of cores and trillions of cells.

Algorithms research: How to efficiently calculate particle paths in parallel.

Vislt's interface is built around five core abstractions.

- Databases: Read data
- Plots: Render data
- Operators: Manipulate data
- Expressions: Generate derived quantities
- Queries: Summarize data

- Databases: Read data
- Plots: Render data
- **Operators:** Manipulate data
- Expressions: Generate derived quantities
- Queries: Summarize data

- Databases: Read data
- Plots: Render data
- **Operators:** Manipulate data
- Expressions: Generate derived quantities
- Queries: Summarize data

- Databases: Read data
- Plots: Render data
- Operators: Manipulate data
- Expressions: Generate derived quantities
- Queries: Summarize data

- Databases: Read data
- Plots: Render data
- **Operators:** Manipulate data
- Expressions: Generate derived quantities
- Queries: Summarize data

- Databases: Read data
- Plots: Render data
- **Operators:** Manipulate data
- Expressions: Generate derived quantities
- Queries: Summarize data

- Databases: Read data
- Plots: Render data
- **Operators:** Manipulate data
- Expressions: Generate derived quantities
- Queries: Summarize data

VisIt is a robust, usable tool, that provides a broad set of visualization capabilities for of HPC simulation data.

- Provides Features that span the "power of visualization"
 - Data Exploration
 - Confirmation
 - Communication

Provides Features for different kinds of users

- Visualization Experts
- Code Developers
- Code Consumers

VisIt is actively developed and has vibrant developer and user communities.

Resources

Presenter Contact Info:

Cyrus Harrison: cyrush@llnl.gov

User Resources:

- Main website: <u>http://www.llnl.gov/visit</u>
- Wiki: <u>http://www.visitusers.org</u>
- Email: <u>visitusers@ornl.gov</u>

Developer Resources:

- Email: <u>visit-developers@ornl.gov</u>
- SVN: <u>http://visit.ilight.com/svn/visit/</u>

Hands-on Session

Guided Tour of Vislt

Materials from:

- <u>http://visitusers.org/index.php?title=VisIt-tutorial-basics</u>
- <u>http://visitusers.org/index.php?title=VisIt-tutorial-data-analysis</u>
- <u>http://visitusers.org/index.php?title=VisIt-tutorial-Python-scripting</u>

Aneurysm Simulation Exploration

http://visitusers.org/index.php?title=Blood_Flow_Aneurysm_Tutorial

Water Flow Simulation Exploration

http://visitusers.org/index.php?title=Water_Flow_Tutorial

Additional Hands-on Materials

Volume Rendering

 <u>http://visitusers.org/index.php?title-Visit-tutorial-Volume-</u> <u>Rendering</u>

Advanced Movie Making

<u>http://visitusers.org/index.php?title=Visit-tutorial-Advanced-movie-making</u>

Resources

Presenter Contact Info:

Cyrus Harrison: cyrush@llnl.gov

User Resources:

- Main website: <u>http://www.llnl.gov/visit</u>
- Wiki: <u>http://www.visitusers.org</u>
- Email: <u>visitusers@ornl.gov</u>

Developer Resources:

- Email: <u>visit-developers@ornl.gov</u>
- SVN: <u>http://visit.ilight.com/svn/visit/</u>

