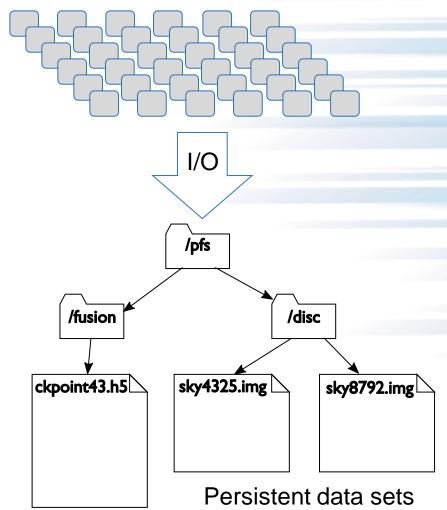


Principles of HPC I/O: Everything you always wanted to know about HPC I/O but were afraid to ask

ATPESC 2020

Phil Carns Mathematics and Computer Science Division Argonne National Laboratory

July 31, 2020


Argonne 📣 🗧

What is HPC I/O?

- HPC I/O: storing and retrieving persistent scientific data on a high performance computing platform
 - Data is usually stored on a parallel file system.
 - Parallel file systems can quickly store and access enormous volumes of data. They do this by carefully orchestrating data transfers between storage devices, system software, and applications.
 - CPU time will be wasted if the application spends too long waiting for data.
- Today's lectures are all about the proper care and feeding of exotic parallel file systems.

Scientific application processes

Parallel file systems

- A parallel file system looks just like the file system on your laptop: directories and files, open/close/read/write.
- However, a parallel file system does not behave like a conventional file system.
- This presentation will highlight 5 key, high-level differences.
- We'll revisit these general concepts throughout the day as we cover more specific optimization and usage tips.

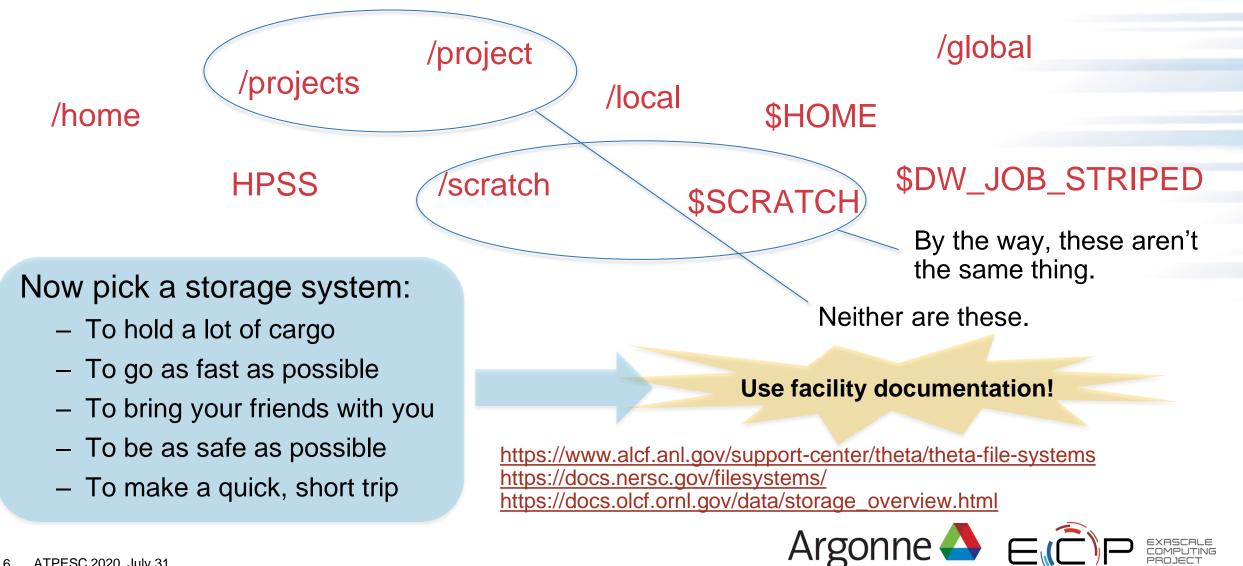
What is unique about HPC I/O? #1: Multiple file systems to choose from on each platform

Pick a vehicle:

- To hold a lot of cargo
- To go as fast as possible
- To bring your friends with you
- To be as safe as possible
- To make quick, short trip

It's easy to tell which one is best for each use case.

#1: Multiple file systems to choose from on each platform (these are real examples from Cori/NERSC and Theta/ALCF)

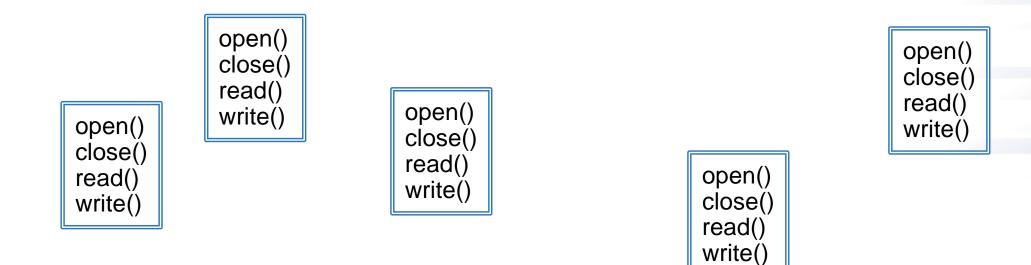


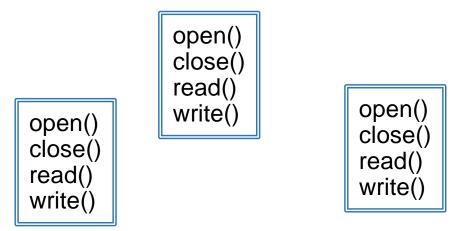
Now pick a storage system:

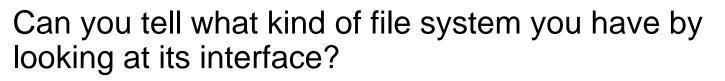
- To hold a lot of cargo
- To go as fast as possible
- To bring your friends with you
- To be as safe as possible
- To make a quick, short trip

#1: Multiple file systems to choose from on each platform (these are real examples from Cori/NERSC and Theta/ALCF)

How to use available vehicles

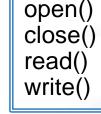

Can you tell what kind of vehicle you have by looking at it's interface?


How to use available file systems



Can you tell what kind of file system you have by looking at its interface?

How to use available file systems

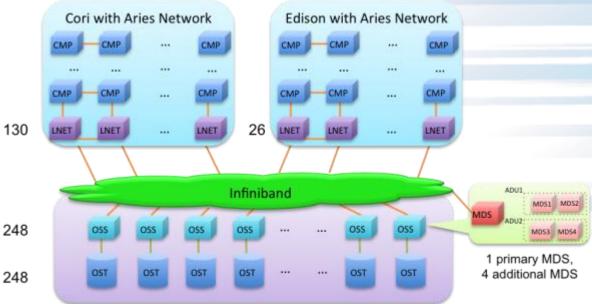


Not so much. This is good for portability, though!

Be alert: an applications will work *correctly* on many different file systems, but they will work *best* on the one that most suits your goals.

Rely on facility documentation and support team to help you pick the correct storage resources for your work.

open()

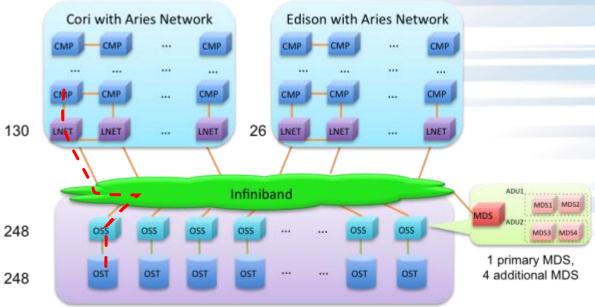

close()

read()
write()

What is unique about HPC I/O? #2: The storage system is large and complex

- A large parallel file system looks like any other file system.
- But there are 10,000 or more disk drives!
- This large collection of disk drives is aggregated by highly specialized hardware 248 and software.
- As a result, parallel file systems might not behave how you expect them to.

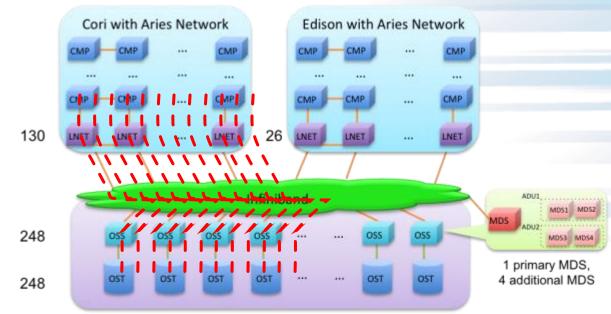
Cori scratch file system diagram NERSC, 2017


Each OSS controls one OST. The Infiniband connects the MDS, ADUs and OSSs to the LNET routers on the Cray XC System. The OSTs are configured with GridRAID, similar to RAID6, (8+2), but can restore failure 3.5 times faster than traditional RAID6. Each OST consists of 41 disks, and can deliver 240TB capacity.

What is unique about HPC I/O? #2: The storage system is large and complex

- Moving data from a CPU to a disk drive requires several network "hops."
- Therefore, the *latency*, or time to complete ¹³ a single small operation, can actually be quite poor.
- This sounds like a bad thing (and to be honest, it is), but what's the silver lining?

Cori scratch file system diagram NERSC, 2017


Each OSS controls one OST. The Infiniband connects the MDS, ADUs and OSSs to the LNET routers on the Cray XC System. The OSTs are configured with GridRAID, similar to RAID6, (8+2), but can restore failure 3.5 times faster than traditional RAID6. Each OST consists of 41 disks, and can deliver 240TB capacity.

What is unique about HPC I/O? #2 the storage system is large and complex

- The network is fast, and you can perform many I/O operations simultaneously.
- Therefore, the *aggregate bandwidth*, or rate of parallel data access, is tremendous.
- Parallel I/O tuning is all about playing to the system's strengths:
 - Move data in parallel with big operations
 - Avoid waiting for sequential small operations

Cori scratch file system diagram NERSC, 2017

Each OSS controls one OST. The Infiniband connects the MDS, ADUs and OSSs to the LNET routers on the Cray XC System. The OSTs are configured with GridRAID, similar to RAID6, (8+2), but can restore failure 3.5 times faster than traditional RAID6. Each OST consists of 41 disks, and can deliver 240TB capacity.

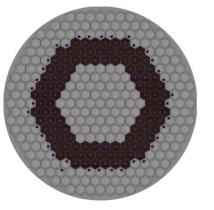
What is unique about HPC I/O? Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on **#3** sophisticated application data models

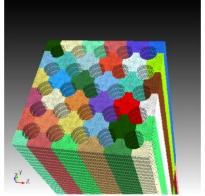
- Applications often use advanced data models according to their scientific objectives
 - The data itself:
 - Multidimensional typed arrays, images composed of scan lines, etc.
 - Also descriptions of that data (metadata)
 - Headers, attributes on data, etc.
- In contrast, parallel file systems have very simple data models
 - Tree-based hierarchy of containers
 - Containers with streams of bytes (files)
 - Containers listing other containers (directories)

Images from T. Tautges (ANL) (upper left), M. Smith (ANL) (lower left), and K. Smith (MIT) (right).

Spectral element mesh (top) for thermal hydraulics computation coupled with finite element mesh (bottom) for neutronics calculation.

Argonne




Scale complexity: Spatial range from the reactor core in meters to fuel pellets in millimeters.

13

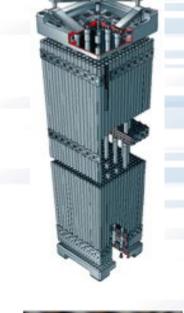
What is unique about HPC I/O? Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on **#3** sophisticated application data models

Images from T. Tautges (ANL) (upper left), M. Smith (ANL) (lower left), and K. Smith (MIT) (right).

Data libraries (like HDF5, PnetCDF, and ADIOS) help to bridge this gap between application data models and file system interfaces.

Why use a high level data library?

- More expressive interfaces for scientific data
 - e.g., multidimensional variables and their descriptions
- Interoperability
 - e.g., enables collaborators to share data in known formats
- Performance
 - e.g., high level libraries hide the details of platformspecific optimizations
- Future proofing
 - e.g., interfaces and data formats that outlive specific storage technologies


Stay tuned for more information in the following sessions:

11:15 Parallel-NetCDF 12:00 HDF5

Spectral element mesh (top) for thermal hydraulics computation coupled with finite element mesh (bottom) for neutronics calculation.

Scale complexity: Spatial range from the reactor core in meters to fuel pellets in millimeters.

14

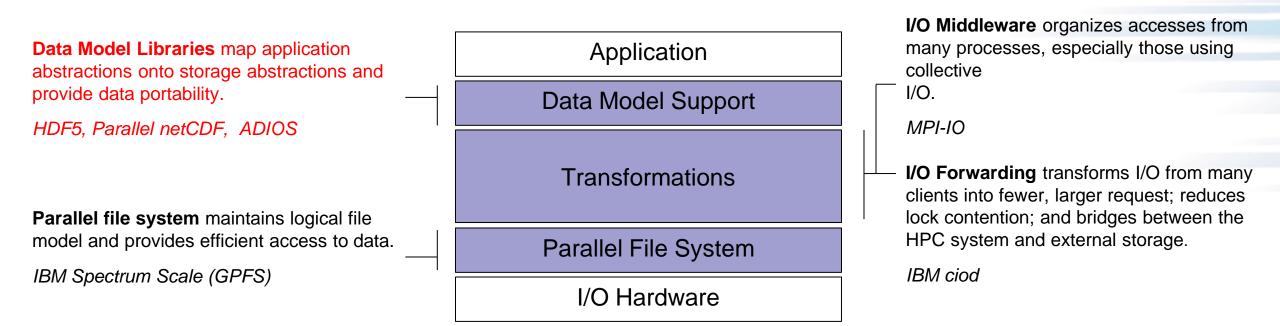
DATAWARP

Danasas

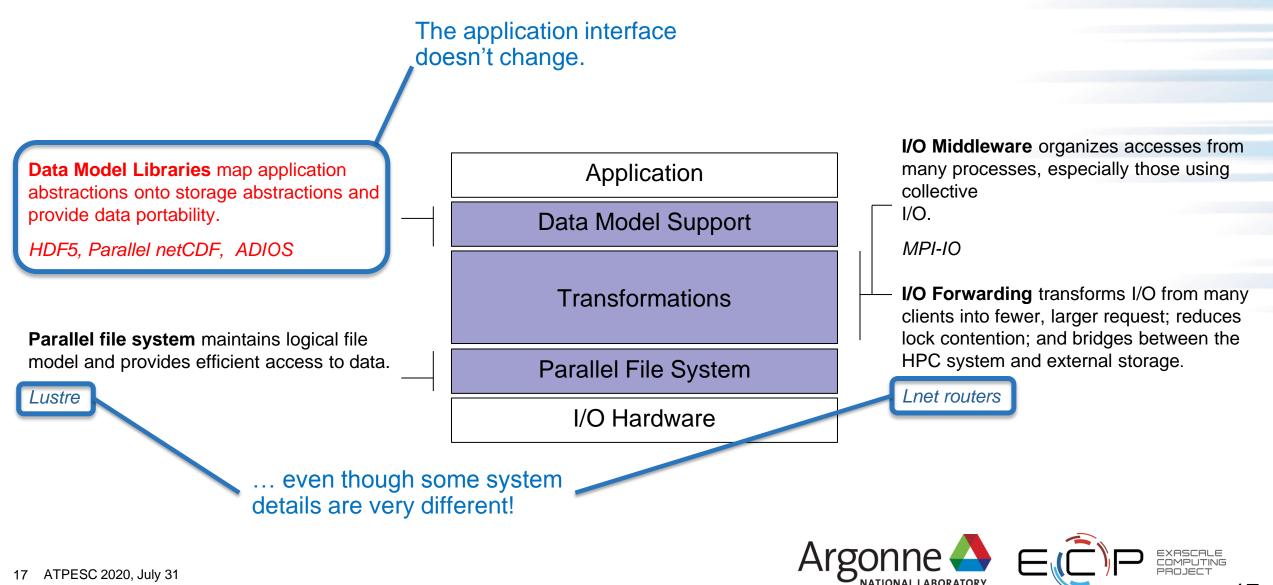
... and more

BM Spectrum Scale

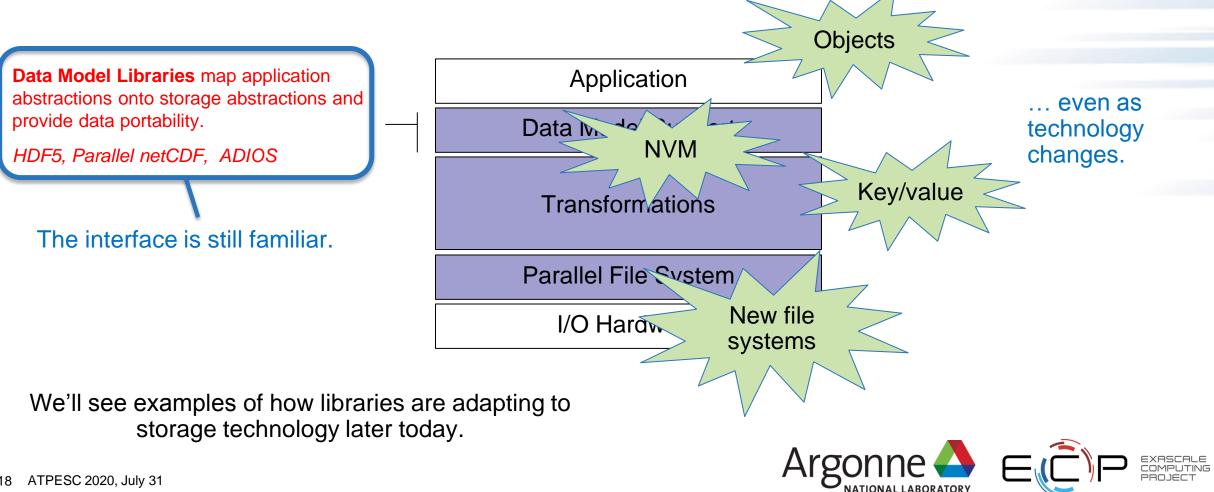
-l-u-s-t-r-e-


What is unique about HPC I/O? #4: each HPC facility is different

- HPC systems are custom-built by a handful of specialized vendors.
- Their storage systems are custom-built as well
 - Different hardware
 - Different software
 - \rightarrow Different performance characteristics
- Use portable tools and libraries (see previous slide) to handle platform-specific optimizations.
- Learn performance debugging principles that can be applied anywhere.


Each HPC facility is different: Mira / ALCF example (previous gen)

The "I/O stack" is the collection of software that translates application data access into storage system operations. It has a few layers.



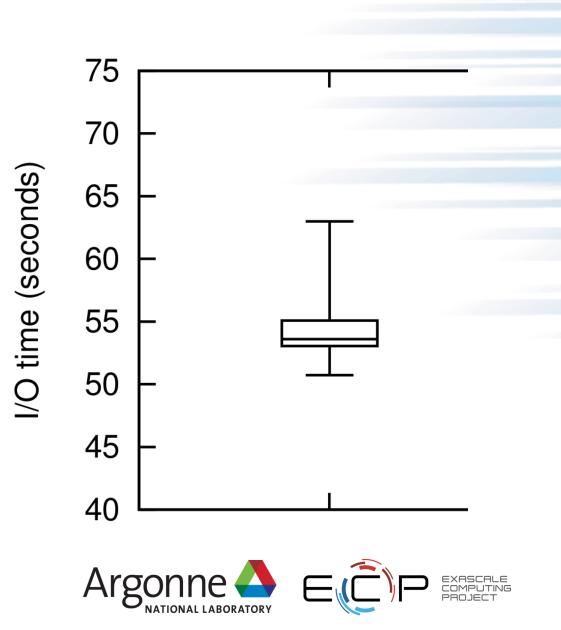
Each HPC facility is different: Theta / ALCF example (current gen)

Each HPC facility is different: future machine example (next gen)

Choosing the right libraries and interfaces for your application isn't just about fitting your data model, but also future-proofing your application.

What is unique about HPC I/O? #5: Expect performance variability

• Why:


- Thousands of hard drives will *never* perform perfectly at the same time.
- You are sharing storage with many other users.
- You are also sharing storage across multiple HPC systems.
- You are also sharing storage with remote transfers, tape archives, and other data management tasks.
- Compute nodes belong exclusively to you during a job allocation, but the storage system does not.
- Performance variance is normal.

[carns@miralac2 ~ 1139867 1139871 1143326 1151809 1153083 1178836 1178840 1179437	24:00:00 24:00:00 12:00:00 12:00:00 24:00:00 12:00:00 12:00:00 12:00:00	8192 runr 8192 runr 2048 runr 4096 runr 16384 runr 512 runr 512 runr 512 runr 512 runr 512 runr	ning MIR-000 ning MIR-40C ning MIR-400 ning MIR-040 ning MIR-408 ning MIR-408 ning MIR-408	00-7BFF1-8192 00-33FF1-8192 00-73FF1-2048 00-737F1-4096 00-77FF1-16384 C0-73BF1-512 80-73BB1-512 40-73B71-512
1179755 1179810 [carns@miralac2 ~]\$ 02:00:00 4096 running MIR-08000-3B7F1-4096 05:45:00 2048 running MIR-08C00-3BFF1-2048 [carns@miralac2 ~]\$				
Mira (BG/G		Cetus BG/Q)	Cooley (Linux)	Globus transfer
ALCF project file system				

What is unique about HPC I/O? #5: Expect performance variability

- Take multiple samples when measuring I/O performance.
- This figure shows 15 samples of I/O time from a 6,000 process benchmark on Edison system.
- Think about how you would accurately assess if a new data strategy performed better or worse. Individual measurements might be misleading.
- We will have a hands-on exercise later in the day that you can use to investigate this phenomenon first hand.

Putting it all together for a happy and healthy HPC I/O experience:

- 1. Consult your facility documentation to find appropriate storage resources.
- 2. Move big data in parallel, and avoid waiting for individual small operations.
- 3. Use high level libraries for data management when possible.
- 4. Learn about performance debugging tools and techniques that you can reuse across systems.
- 5. Be aware that I/O performance naturally fluctuates over time.

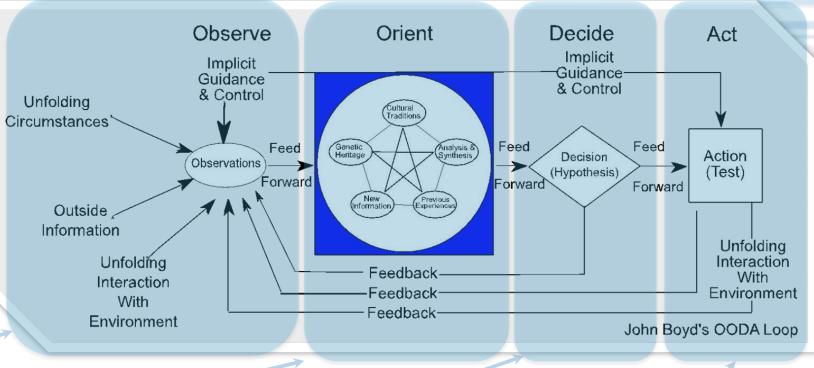

One more thing: Improving I/O performance is an ongoing process

Figure by Patrick Edwin Moran

Applications are updated, systems change, and new allocations are granted.

Today we will equip you with the tools you need to monitor and improve your I/O performance.

Performance characterization tools (e.g., Darshan)

Background knowledge about how storage systems work (e.g., this presentation) Facility resources (e.g., ALCF, OLCF, and NERSC staff and documentation)

Argonne

Optimization techniques, tools, and libraries (e.g., later presentations today)

22

Thank you!

