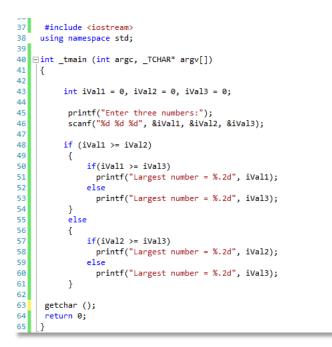
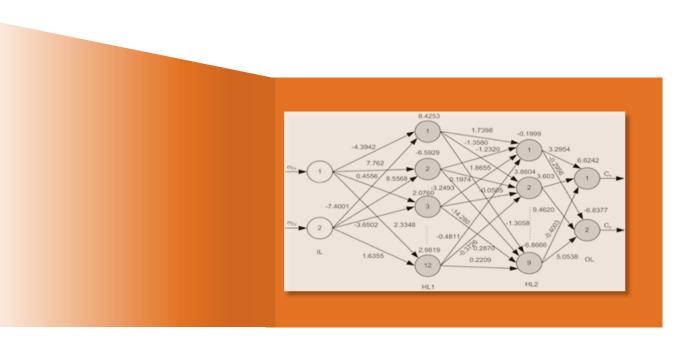
Accelerating Software 2.0

Foundations for Next-Generation Computer Systems

Christopher Aberger Director of Software Engineering

Software 1.0 vs Software 2.0

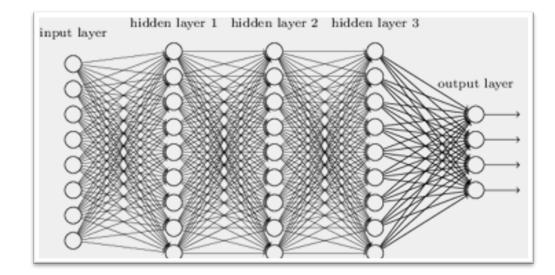




- Written in code (C++, ...)
- Requires domain expertise
 - Decompose the problem
 - Design algorithms
 - Compose into a system

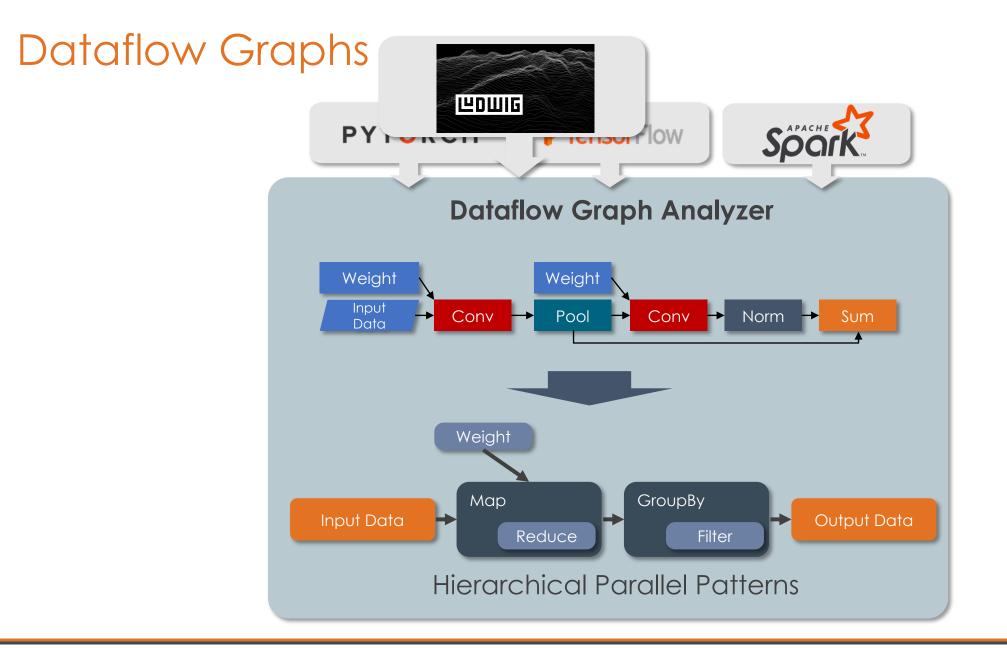
- Programmer input: training data
- Written in the weights of a neural network model by optimization
- Reduced lines of code

Software 2.0 is Dataflow



1000x Productivity

Google shrinks language translation code from 500k imperative LoC to **500 lines of dataflow (TensorFlow)**



Software 2.0 is replacing Software 1.0

The Case for		AI FOR			
Tim Kraska [*] MIT Cambridge, MA aska@mit.edu ale: Jeffrey Dean Google Inc		ean: Holistic Data Repai Probabilistic Inference		SCIENCE RICK STEVENS VALERIE TAYLOR Argonne National Laboratory	
Snorkel: Rap	id Training Da Veak Supervis		nristopher Ré [*] aterloo	July 22–23, 2019 JEFF NICHOLS ARTHUR BARNEY MACCABE Oak Ridge National Laboratory August 21–23, 2019	
Alexander Ratner Jason Fries {ajratner, bach, henryre	S Sen Wu Christo Stanford University Stanford, CA, USA	opher Ré		KATHERINE YELICK DAVID BROWN Lawrence Berkeley National Laboratory September 11–12, 2019	

Next gen Software 2.0 systems need support for **Hierarchical parallel pattern Dataflow** Natural ML execution model

₽÷÷

Terabyte sized models Higher accuracy

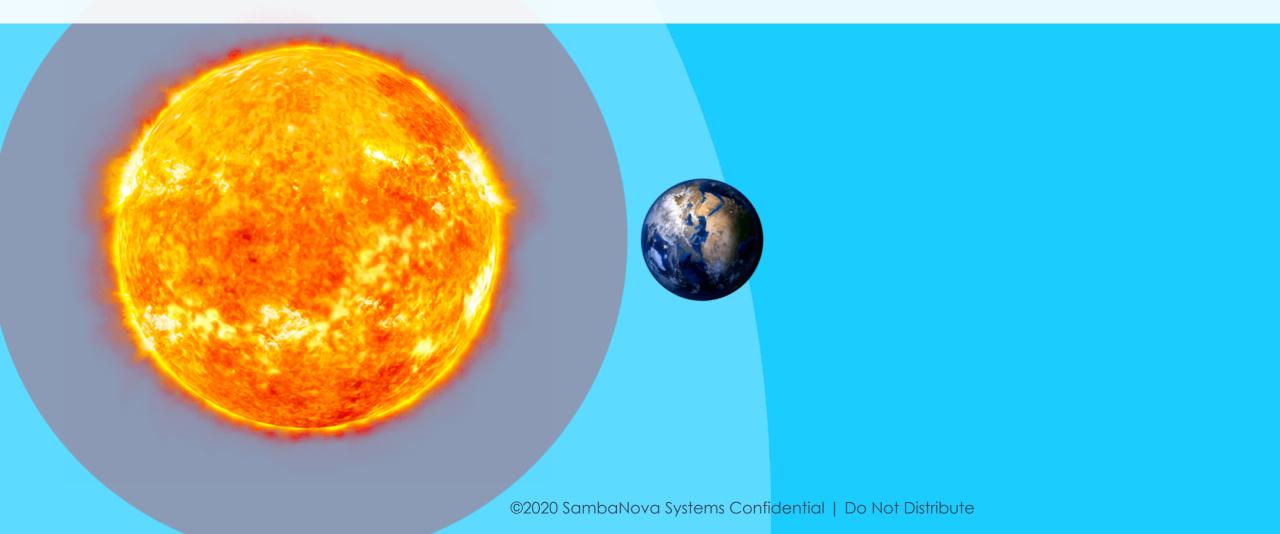
> **Sparsity** Graph based neural networks

Flexible mapping Model and data parallelism

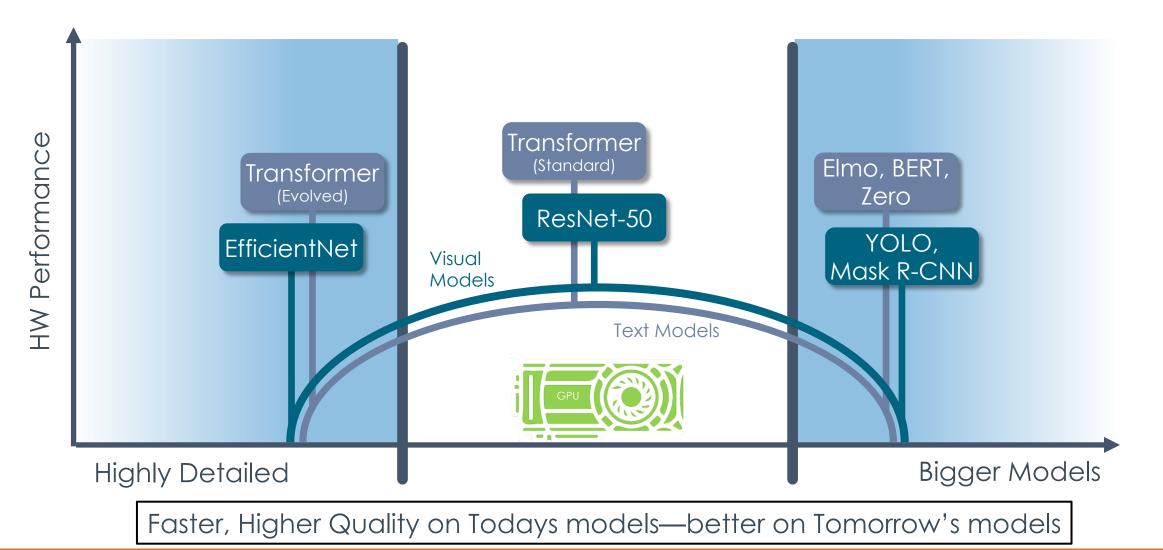
Data processing SQL in inner loop of ML training

Goldilocks Zone

Too Hot



Yesterday's Goldilocks Zone is Constraining Progress

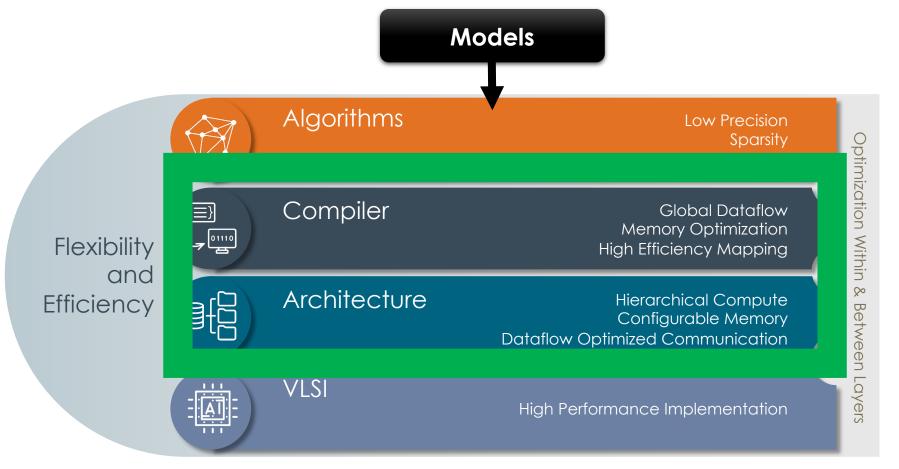


How do we break out of the Goldilocks Zone?

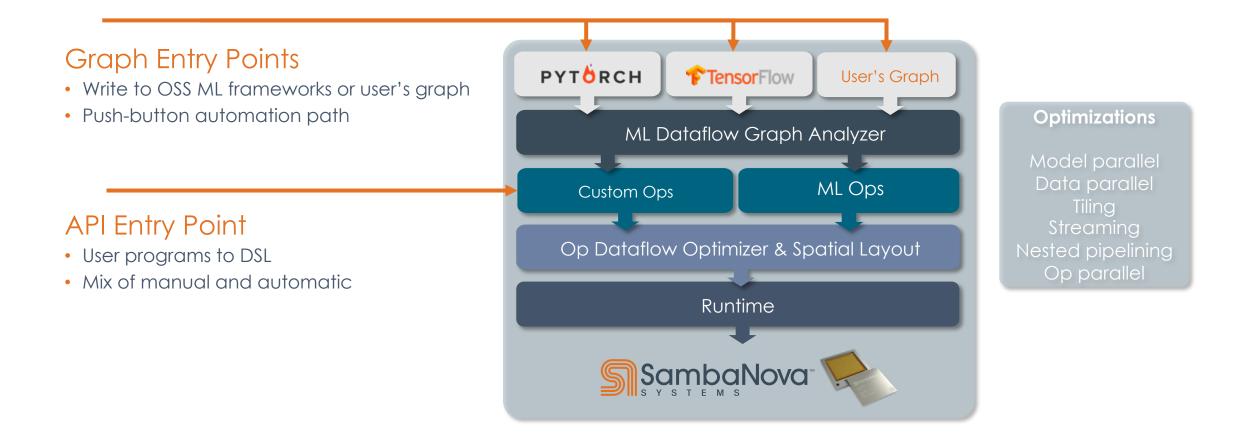
Fundamental advances required at all layers of the stack.

The SambaNova Systems Advantage: Reconfigurable Dataflow Architecture

Full stack co-engineering yields optimizations where best delivered with the highest impact



SambaFlow Open Software for DataScale Systems



SambaNova Systems Cardinal SN10 RDU

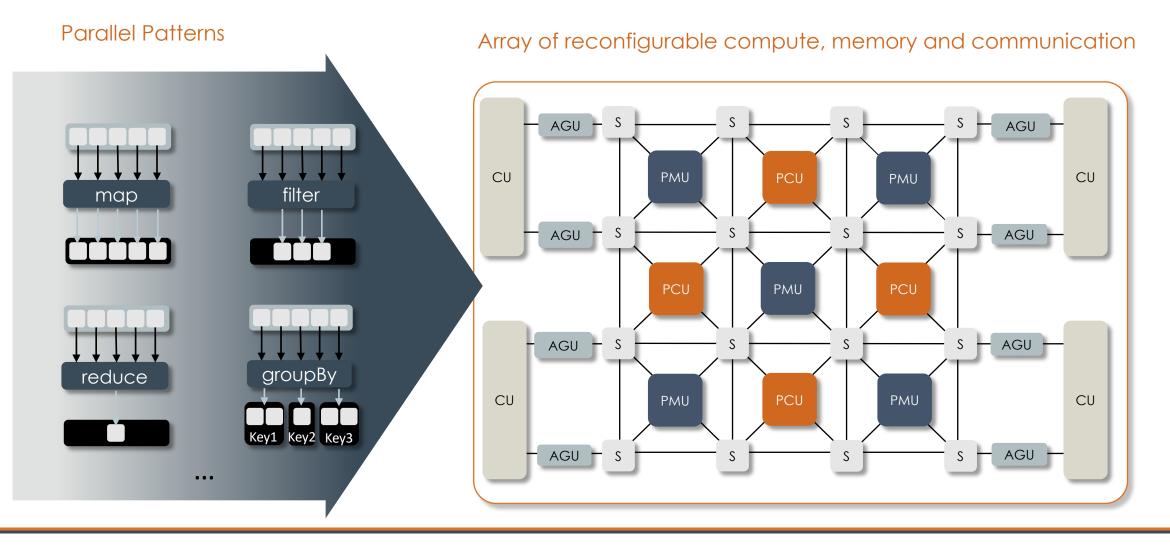
<u>The Chip</u>

- First Reconfigurable Dataflow Unit (RDU)
- TSMC 7nm
- 40B transistors
- 50 Km of wire
- 100s of TFLOPS
- 100s MB on chip
- Direct interfaces to TBs off chip

The System

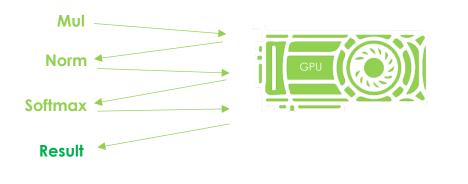
Open standard rack, Open standard form factor, Open standard power, Open standard cooling, Open standard operations ...

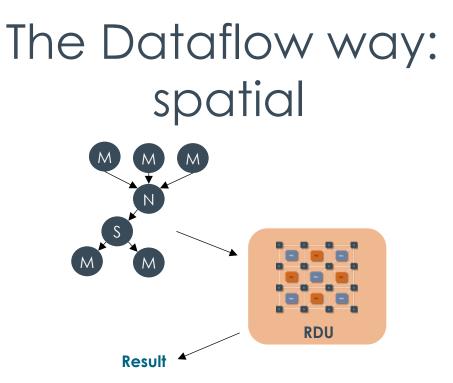
Reconfigurable Dataflow Unit (RDU)



Spatial Dataflow Within an RDU

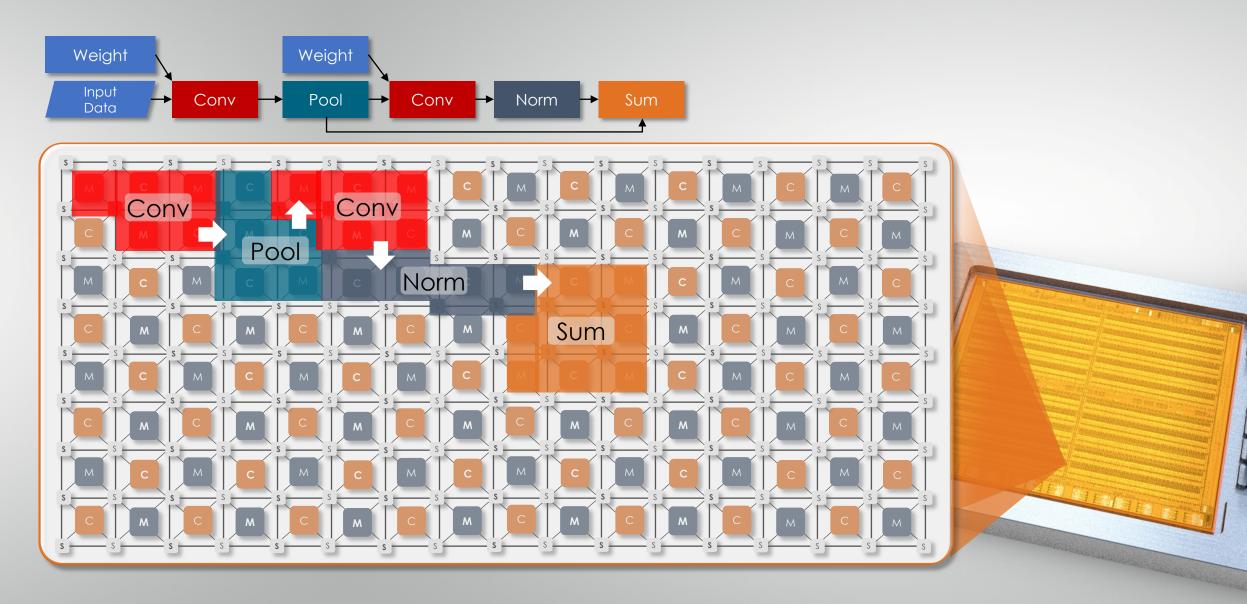
The old way: kernel-by-kernel



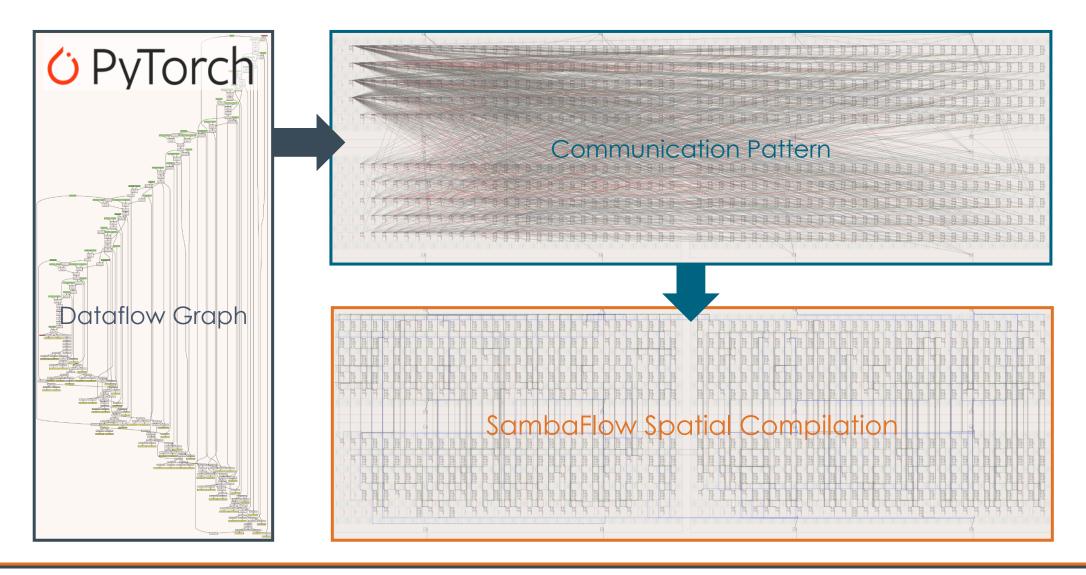


SambaFlow eliminates overhead and maximizes utilization

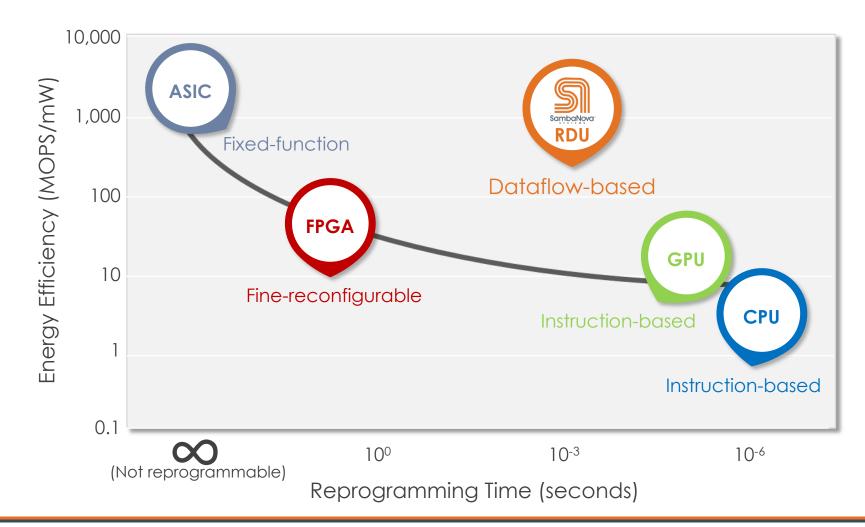
Rapid Dataflow Compilation to RDU



SambaFlow Produces Highly Optimized Spatial Mappings

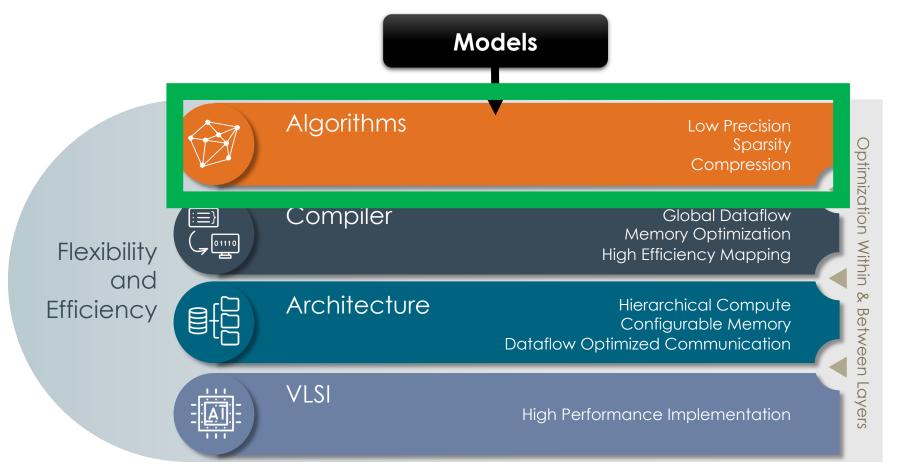


Uncompromised Programmability and Efficiency Breaking out of the programmability vs. efficiency tradeoff curve

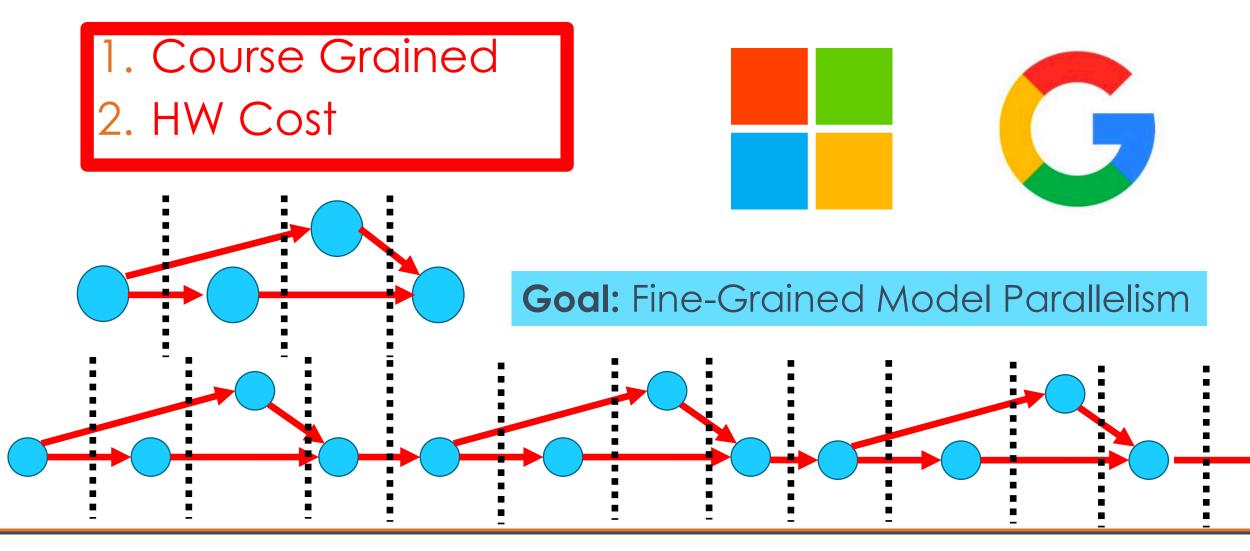


The SambaNova Systems Advantage: Reconfigurable Dataflow Architecture

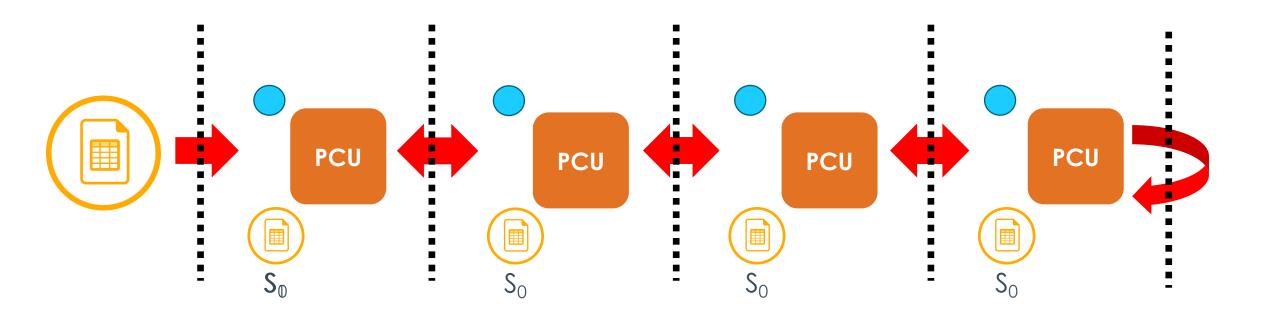
Full stack co-engineering yields optimizations where best delivered with the highest impact



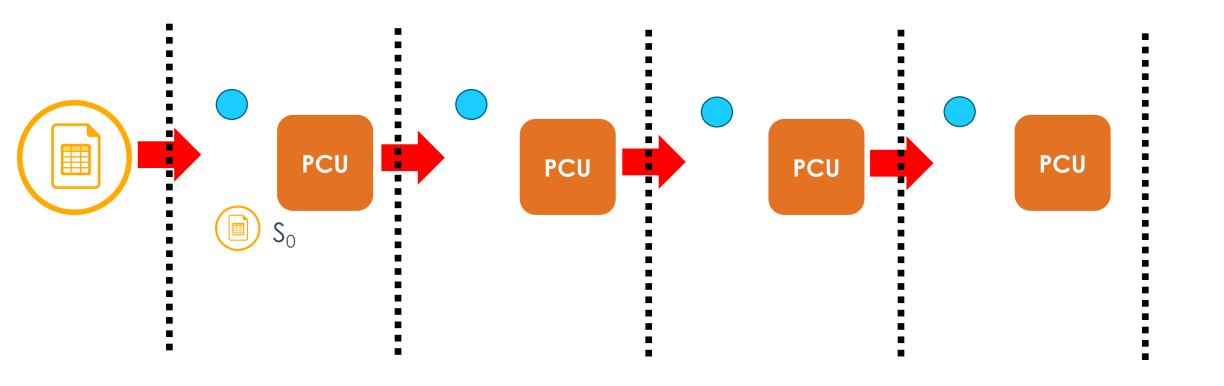
Model (Pipeline) Parallelism: Are we there yet?

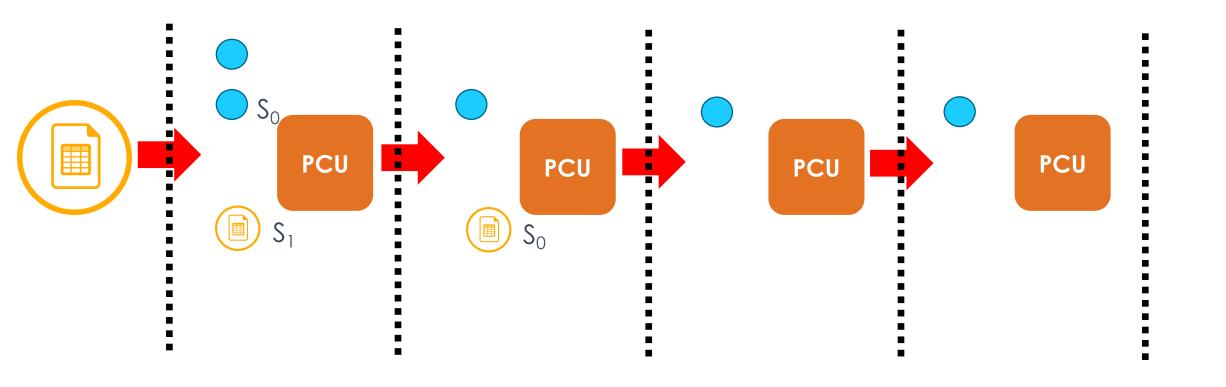


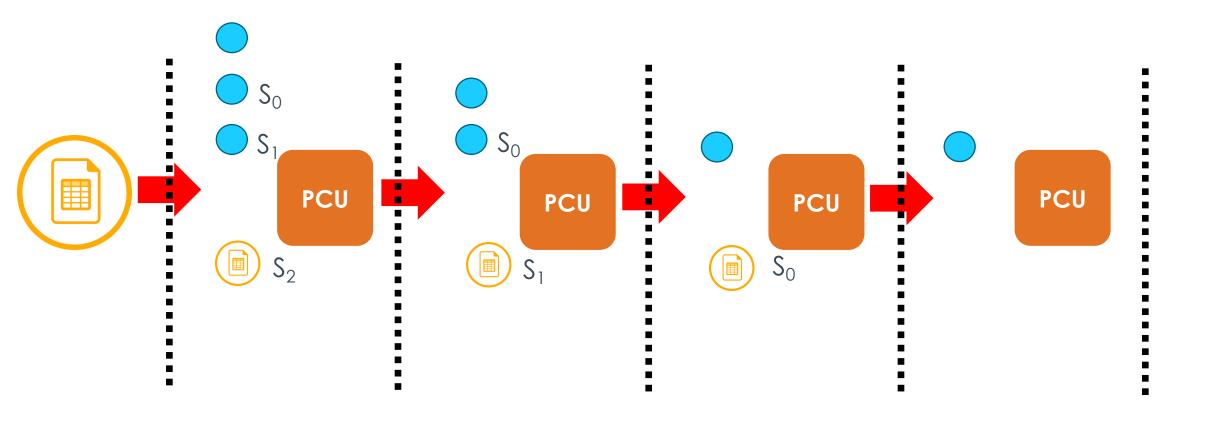
HW Cost: GPipe

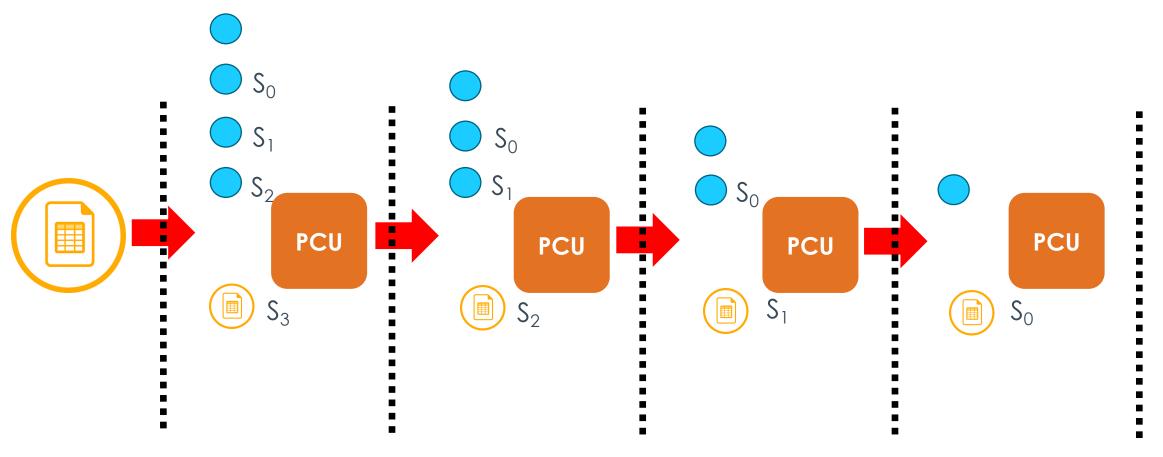


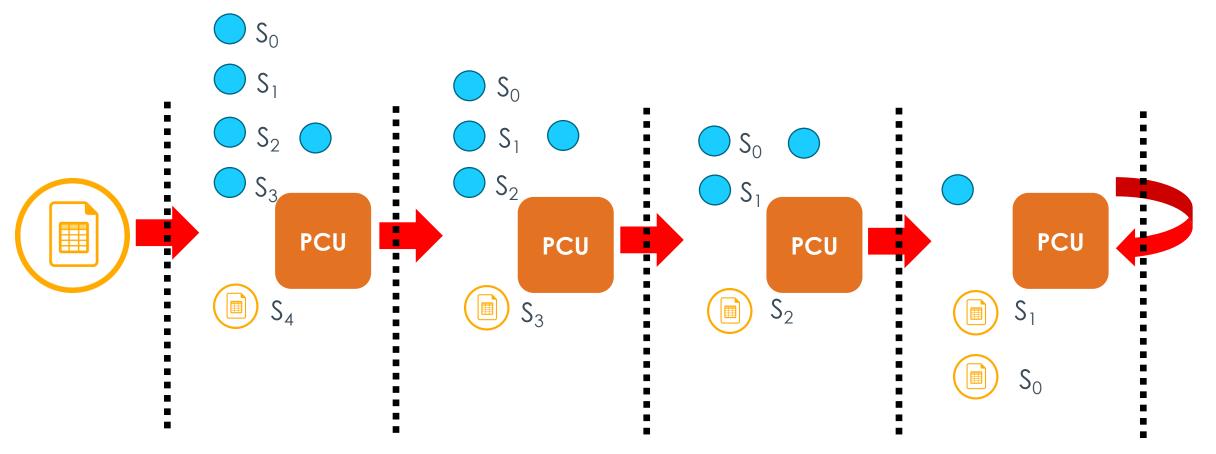
Panic: Sacrifices latency for synchronous execution!

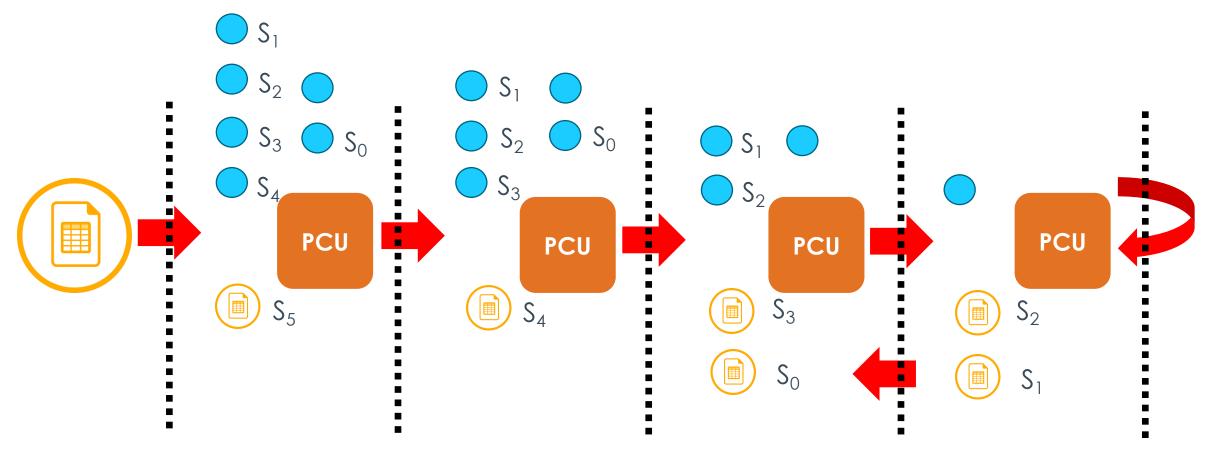


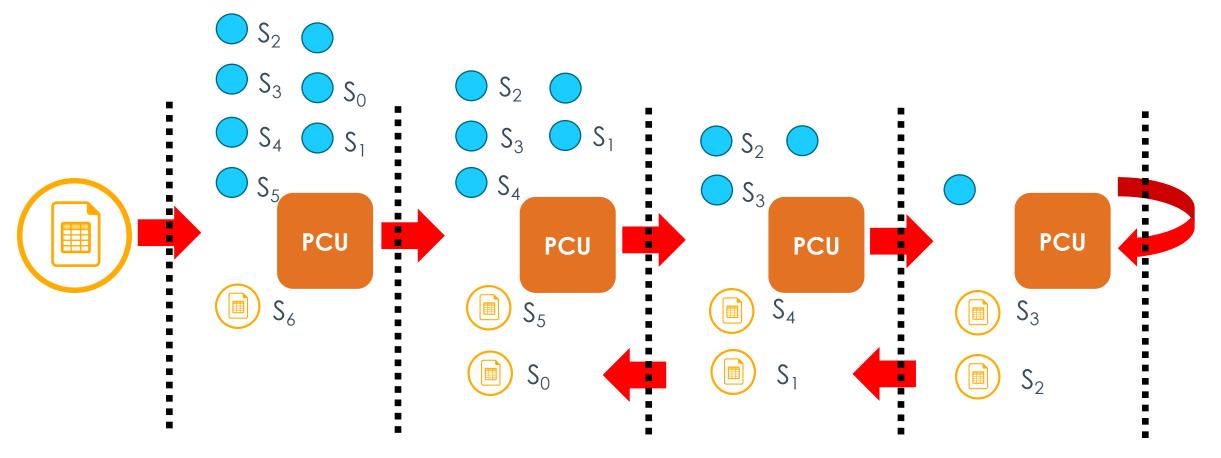


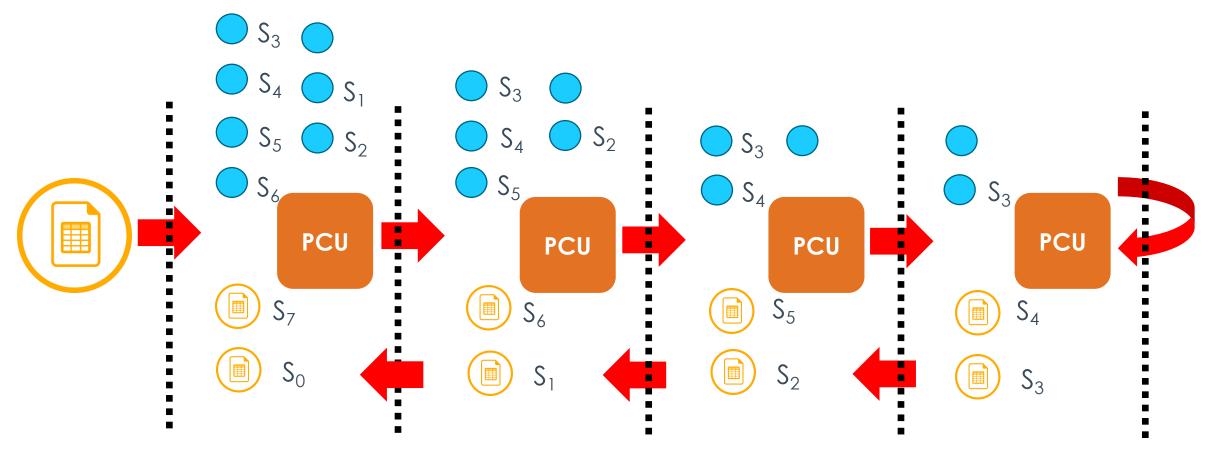






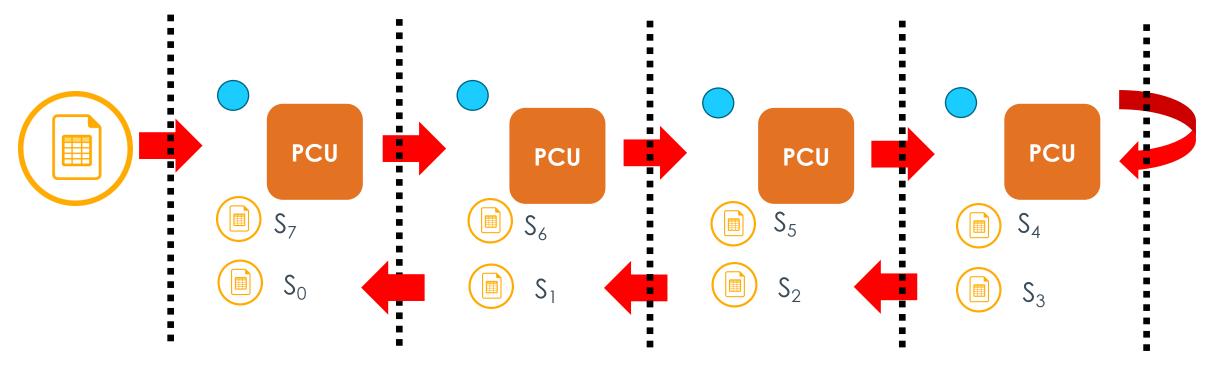






Panic: Sacrifices memory for synchronous execution!

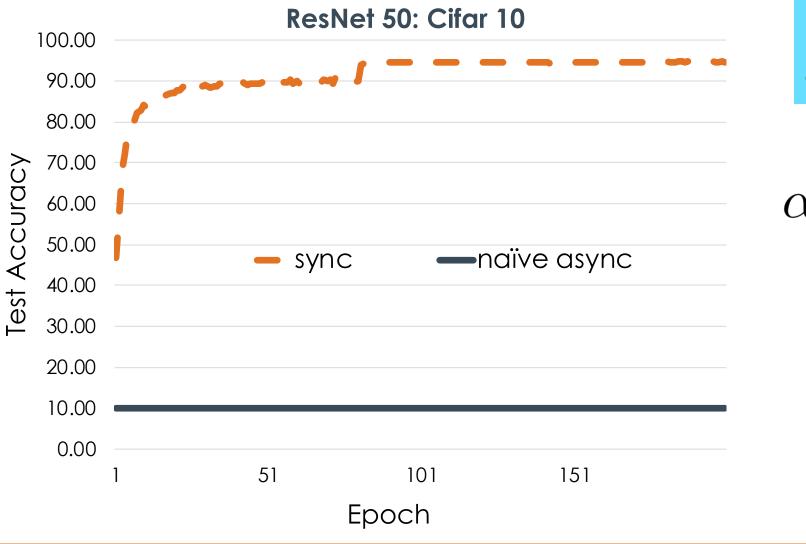
Ideal Pipeline Parallelism Steady State



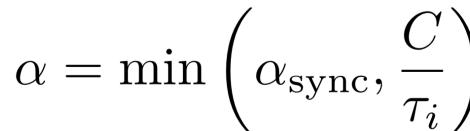
Goal: No hardware sacrifices!

Panic: Introduces **asynchrony** (delays).

Houston, we have a problem.

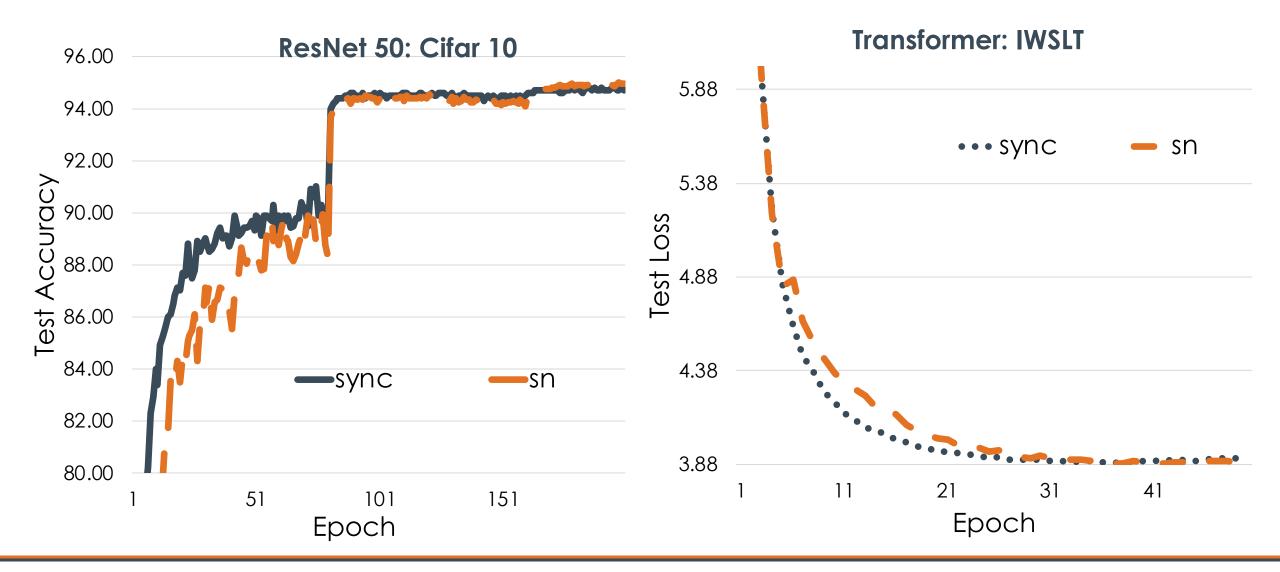


Key Insight: Scale your learning rate proportional to the delay.



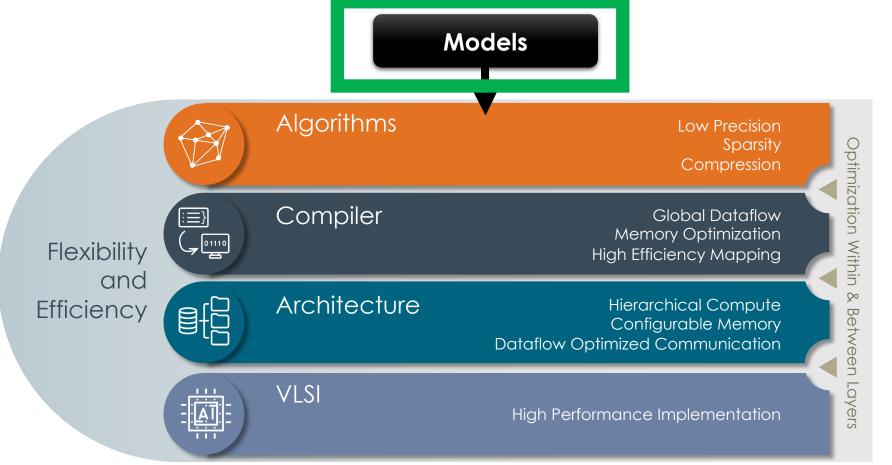
Chris De Sa

Enabling Peak Dataflow Efficiency



The SambaNova Systems Advantage: Reconfigurable Dataflow Architecture

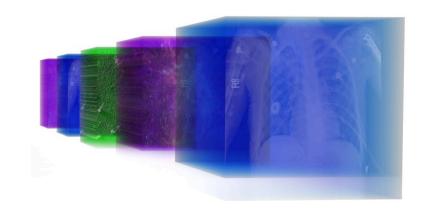
Full stack co-engineering yields optimizations where best delivered with the highest impact

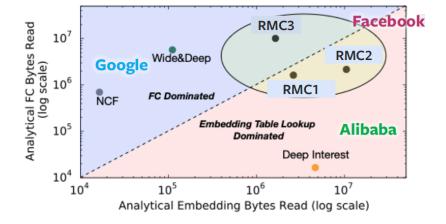


How do we future proof our code? What are the future models?

Models are the new code.

Enabling New Capabilities $(0 \Rightarrow 1)$





Trillion parameter NLP models Key to knowledge understanding

High Resolution Deep Learning 50k x 50k

Astronomy, medical imaging, X-ray imaging, ...

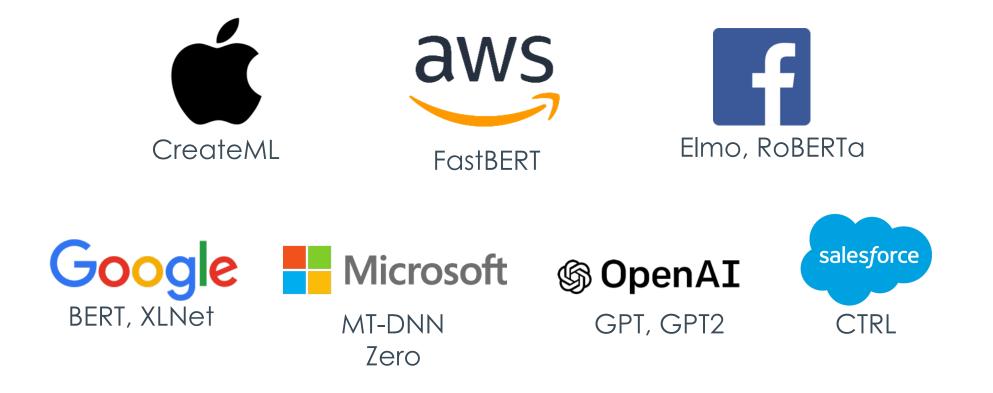
Recommendation models with huge 100GB embedding tables

Recommendation is the backbone of internet services

Part 1: NLP

Models are the new code.

Proliferation of NLP Models



Richer Context, In a Small Amount of Space

6							() (
	ALL	IMAGES	VIDEOS	MAPS	NEWS	SHOPPING		

Microsoft open sources breakthrough optimizations for transformer inference on GPU and CPU

January 21, 2020

f 🎔 in 🗳

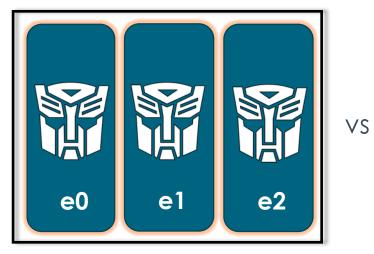
EMMA NING

Senior Program Manager, Azure Machine Learning

A **three-layer** BERT model in production at Bing.

Richer context, same space.

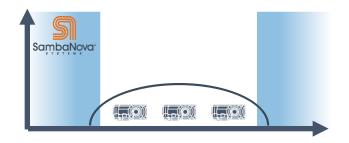
Richer, Contextual Information

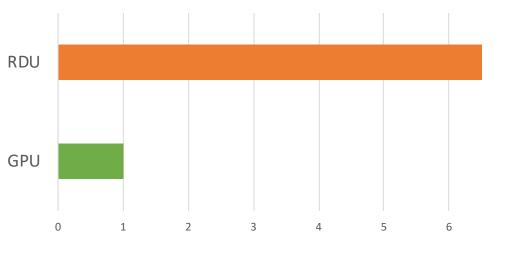


3-wide encoders

24-slim encoders

Fewer Parameters, Better Quality on **Natural Language Inference** QNLI : 3-layer 78.7 vs. Deeper 79

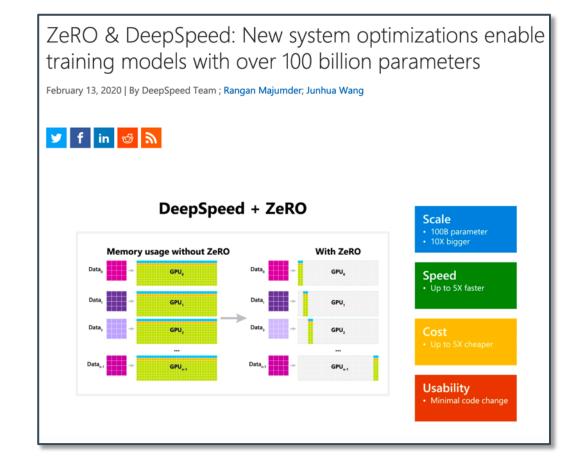




SambaNova enables Deeper Design Points

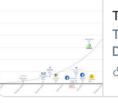
Pushing the Boundaries of NLP

 \sim



Satya Nadella 🤣 @satyanadella

The new language model our teams built is the largest and most powerful one ever created – a milestone with the promise to transform how technology understands and assists us.



Turing-NLG: A 17-billion-parameter language model by Mic... This figure was adapted from a similar image published in DistilBERT. Turing Natural Language Generation (T-NLG) is ... \mathscr{O} microsoft.com

9:28 AM · Feb 12, 2020 · Twitter Web App

Enabling Large Model Architectures With a Single System

Order of magnitude performance improvement, an order of magnitude fewer systems

"One Model" 1Trillion Params in a Single System: Same Programming Model

Part 2: Vision

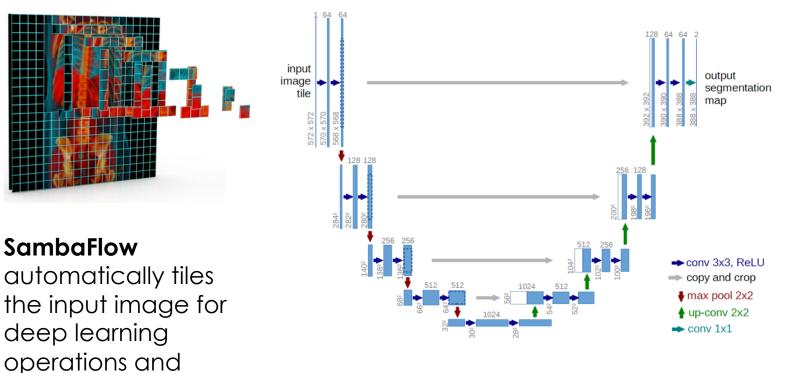
Models are the new code.

Fast Growing Scale of Model Training Data Evolution of high-resolution Deep Learning

Low-resolution (e.g. cats) **4k images** (e.g. Autonomous driving) **50k x 50k** (e.g. astronomy, medical imaging, virus, ...

Mapping High-Res Images to SambaNova

40k x 40k image running forward pass on UNet (image segmentation model)



Tiles are streamed through model pipeline on chip

- 3 x 40960 x 40960 input
- 409600 tiles per surface, or up to 26 million tiles for 64 channels
- GPU fails to allocate
 memory
- Even CPU errors out in PyTorch!

RuntimeError: offset is too big

Only SambaNova can run these workloads out-of-thebox

handles overlaps

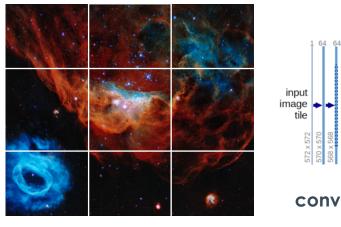
between tiles

No Compromise High-Res

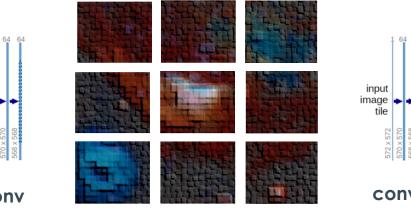
Classic tiling:

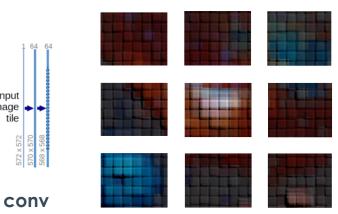
chop image into subimages

Loses information in output!



Tiled input





input

tile

572

Tiled output

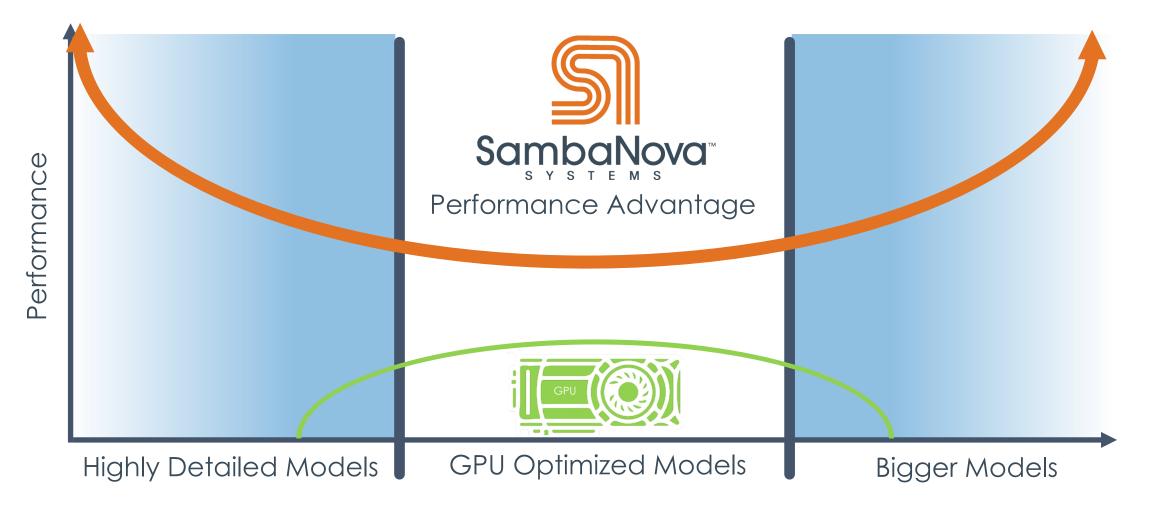
SN tiling: handles overlaps across tiles based on network

Identical result as non-tiled!

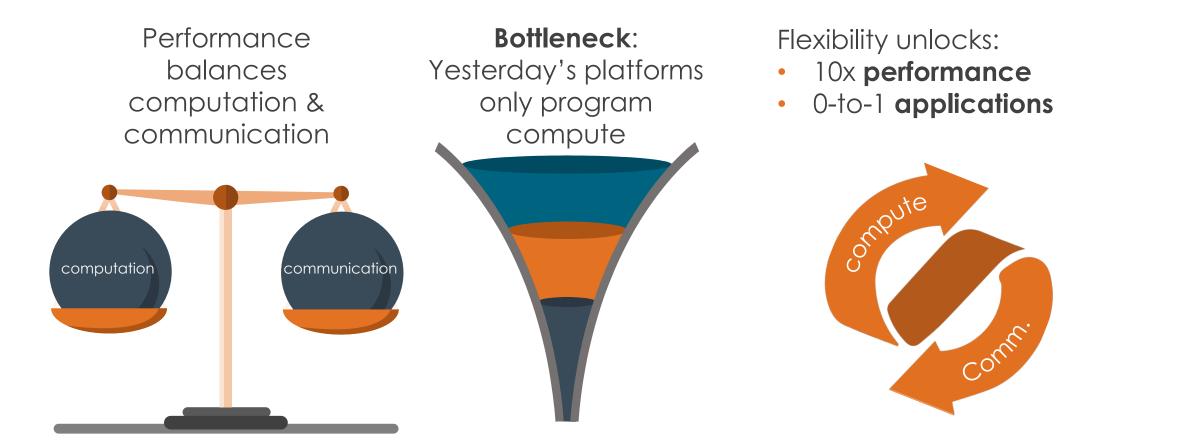
And that's just the tip of the iceberg...

GANs, Reinforcement Learning, Time Series, GCNs, PCA, and many more.

SambaNova: Breaking the Goldilocks Barriers, for Everyone



Reconfigurable Dataflow for Unprecedented Flexibility



We're hiring: sambanova.ai

