
1
1

OpenMP* and the fundamental
design patterns of parallel

programming

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Tim Mattson
Intel Corp.

timothy.g.mattson@ intel.com

I’m just a simple kayak instructor

Photo © by Greg Clopton, 2014

Introduction

2

To support my kayaking habit I
work as a parallel programmer

Which means I know how to turn
math into lines on a speedup plot

P

S

Disclaimer & Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.
Performance tests and ratings are measured using specific computer systems and/or components and
reflect the approximate performance of Intel products as measured by those tests. Any difference in
system hardware or software design or configuration may affect actual performance. Buyers should
consult other sources of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the performance of Intel
products, reference www.intel.com/software/products.
All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, VTune, and Cilk are trademarks of Intel
Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations
that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction
sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and
Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

4

Preliminaries: Systems for exercises

• Copy the exercises to your home directory
$ cp -r /projects/ATPESC2019/OMP_Exercises .

• You can just run on the login nodes or use qsub (to get good timing numbers)
• To get a single node for 30 minutes in interactive mode

qsub –A ATPESC2019 –n 1 –t 30 -I

• On cooley …. An X86 cluster (Two 2.4 GHz Intel Haswell E5-2620 v3
processors per node with 6 cores per CPU, 12 cores total) with 384 GB RAM

ssh <<login_name>>@cooley.alcf.anl.gov
• The OpenMP compiler

Add the following line to “.soft.cooley” and then run the resoft command
+intel-composer-xe

icc –fopenmp << file names>>

Use Cooley … or even your own laptop (Apple or Linux …
windows is difficult). For Apple laptops, use gcc, not clang

git clone https://github.com/tgmattso/ATPESC.git

Note: the gcc compiler works for OpenMP
on Cooley:

gcc –fopenmp <<file names>>

Note: this is a capital “I” (eye) not a lower case L

You can use theta as well, but the interactive shell runs on
“the mom node”. You need to use “aprun” to submit jobs.

Warning: by default
Xcode renames gcc

to Apple’s clang
compiler.

Use Homebrew to
load a real, gcc

compiler.

Preliminaries: Systems for exercises, Theta
compile - Use cc, CC, ftn. Default compilers are Intel

CC -qopenmp program.C

Start interactive job
qsub–I –n 32 –t 30 –q ATPESC2020 –A ATPESC2020

run
export OMP_NUM_THREADS=4
aprun-n 16 -N 8 -d 1 -j 1 -cc depth ./a.out # you can run <= node count of job

Additional examples please see https://gitlab.com/alcf/training/-
/tree/master/GettingStarted/theta/omp
Also see JaeHyuk's talk from Sunday evening: https://anl.app.box.com/file/695902747751

aprun options
-n total_number_of_ranks
-N ranks_per_node
-d depth[number of cpus(hyperthreads) per rank]
-cc depth [Note: depthis a keyword]
-j hyperthreads[cpus(hyperthreads) per compute unit (core)]

5

https://gitlab.com/alcf/training/-/tree/master/GettingStarted/theta/omp
https://anl.app.box.com/file/695902747751

Preliminaries: Systems for exercises, Ascent

#compile
xlC_r++ -O2 -qsmp -qoffload main.c

start an interactive job
bsub -W 2:00 -nnodes 1 -P GEN139 -Is $SHELL

run the program
jsrun -n 1 -a 1 -g 1 a.out

Example program build and run (both C and Fortran)
https://github.com/vlkale/OpenMP-tutorial/tree/master/offload-101

6

https://github.com/vlkale/OpenMP-tutorial/tree/master/offload-101

7

Preliminaries: Part 1

• Disclosures
–The views expressed in this tutorial are those of the

people delivering the tutorial.
– We are not speaking for our employers.
– We are not speaking for the OpenMP ARB

• We take these tutorials VERY seriously:
–Help us improve … tell us how you would make this

tutorial better.

8

Preliminaries: Part 2

• Our plan for the day .. Active learning!
–We will mix short lectures with short exercises.
–You will use your laptop to connect to a multiprocessor

server.

• Please follow these simple rules
–Do the exercises that we assign and then change things

around and experiment.
– Embrace active learning!

–Don’t cheat: Do Not look at the solutions before you
complete an exercise … even if you get really frustrated.

9

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Thread Affinity and Data Locality
– Thread Private Data
– Synchronization: More than you ever wanted to know
– Programming your GPU with OpenMP

10

OpenMP* overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTERC$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

§A set of compiler directives and library routines for
parallel application programmers
§Greatly simplifies writing multi-threaded (MT) programs
in Fortran, C and C++
§Standardizes established SMP practice + vectorization and
heterogeneous device programming

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

The growth of complexity in OpenMP
• OpenMP started out in 1997 as a simple interface for application programmers

more versed in their area of science than computer science.

• The complexity has grown over the years! It has become overwhelming

11

0
50

100
150
200
250
300
350
400
450
500

1995 2000 2005 2010 2015 2020

4.5

4.0

3.13.0

Merged C/C++ and Fortran spec

C/C++ spec

Fortran spec

Page counts (not counting front matter, appendices or index) for versions of OpenMP

year

Page counts (spec only)

5.0*

1.0

1.0

1.1

2.5

2.02.0

* Does not include the tools interface added with OpneMP 5.0 which pushes the page count to 618

OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved
execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.
SPMD pattern: Create threads with a parallel region and split up
the work using the number of threads and the thread ID.

double omp_get_wtime() Speedup and Amdahl's law.
False sharing and other performance issues.

setenv OMP_NUM_THREADS N Setting the internal control variable for the default number of
threads with an environment variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.
Revisit interleaved execution.

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

nowait Disabling implied barriers on workshare constructs, the high cost of
barriers, and the flush concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 20 items

12

13

OpenMP basic definitions: Basic Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er

CPU cores SIMD units GPU cores

Shared address space (NUMA)

H
W

OpenMP basic definitions: Basic Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er

Shared address space (SMP)

H
W

. . .

Fort the OpenMP Common Core, we focus on Symmetric Multiprocessor Case ….
i.e. lots of threads with “equal cost access” to memory

15

OpenMP basic syntax
• Most of the constructs in OpenMP are compiler directives.

C and C++ Fortran
Compiler directives

#pragma omp construct [clause [clause]…] !$OMP construct [clause [clause] …]

Example
#pragma omp parallel private(x)
{

}

!$OMP PARALLEL

!$OMP END PARALLEL

Function prototypes and types:
#include <omp.h> use OMP_LIB

• Most OpenMP* constructs apply to a “structured block”.
– Structured block: a block of one or more statements with one point of entry at the top and

one point of exit at the bottom.
– It’s OK to have an exit() within the structured block.

16

Exercise, Part A: Hello world
Verify that your environment works
• Write a program that prints “hello world”.

#include<stdio.h>
int main()
{

printf(“ hello ”);
printf(“ world \n”);

}

17

Exercise, Part B: Hello world
Verify that your OpenMP environment works
• Write a multithreaded program that prints “hello world”.

#include <stdio.h>
int main()
{

printf(“ hello ”);
printf(“ world \n”);

}

Switches for compiling and linking

gcc –fopenmp Gnu (Linux, OSX)

pgcc -mp pgi PGI (Linux)

icl /Qopenmp Intel (windows)

icc –fopenmp Intel (Linux, OSX)

#pragma omp parallel

{

#include <omp.h>

}

18

Solution
A multi-threaded “Hello world” program

• Write a multithreaded program where each thread prints “hello world”.

#include <omp.h>
#include <stdio.h>
int main()
{

#pragma omp parallel
{

printf(“ hello ”);
printf(“ world \n”);

}
}

Sample Output:
hello hello world

world

hello hello world

world

OpenMP include file

Parallel region with
default number of threads

End of the Parallel region

The statements are interleaved based on how the operating schedules the threads

19

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data environment
• Memory model
• Irregular Parallelism and tasks
• Recap
• Beyond the common core:

– Worksharing revisited
– Synchronization: More than you ever wanted to know
– Thread private data
– Going deeper into tasks

20

OpenMP programming model:

Fork-Join Parallelism:
uMaster thread spawns a team of threads as needed.

uParallelism added incrementally until performance goals are met,
i.e., the sequential program evolves into a parallel program.

Parallel Regions
Master
Thread
in red

A Nested
Parallel
region

Sequential Parts

21

Thread creation: Parallel regions

• You create threads in OpenMP* with the parallel construct.
• For example, To create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID,A);

}

l Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread
executes a
copy of the
code within

the
structured

block

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

22

Thread creation: Parallel regions example

• Each thread executes the
same code redundantly.

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID, A);

}
printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single
copy of A is

shared
between all

threads.

Threads wait here for all threads to finish
before proceeding (i.e., a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

23

Thread creation: How many threads did you actually get?

• Request a number of threads with omp_set_num_threads()
• The number requested may not be the number you actually get.

– An implementation may silently give you fewer threads than you requested.
– Once a team of threads has launched, it will not be reduced.

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();

int nthrds = omp_get_num_threads();
pooh(ID,A);

}

l Each thread calls pooh(ID,A) for ID = 0 to nthrds-1

Each thread
executes a
copy of the
code within

the
structured

block

Runtime function to
request a certain

number of threads

Runtime function to
return actual

number of threads
in the team

24

An interesting problem to play with
Numerical integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a
sum of rectangles:

Where each rectangle has width Dx and
height F(xi) at the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X0.0

25

Serial PI program

static long num_steps = 100000;
double step;
int main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

See OMP_exercises/pi.c

26

Serial PI program

#include <omp.h>
static long num_steps = 100000;
double step;
int main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
double tdata = omp_get_wtime();
for (i=0;i< num_steps; i++){

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;
tdata = omp_get_wtime() - tdata;
printf(“ pi = %f in %f secs\n”,pi, tdata);

}

See OMP_exercises/pi.c

The library routine
get_omp_wtime()
is used to find the

elapsed “wall
time” for blocks of

code

27

Exercise: the parallel Pi program
• Create a parallel version of the pi program using a parallel

construct:
#pragma omp parallel.

• Pay close attention to shared versus private variables.
• In addition to a parallel construct, you will need the runtime

library routines
– int omp_get_num_threads();
– int omp_get_thread_num();
–double omp_get_wtime();
–omp_set_num_threads(); Time in Seconds since a

fixed point in the past

Thread ID or rank

Number of threads in the team

Request a number of
threads in the team

28

Hints: the Parallel Pi program
• Use a parallel construct:

#pragma omp parallel

• The challenge is to:
– divide loop iterations between threads (use the thread ID and the

number of threads).
– Create an accumulator for each thread to hold partial sums that you

can later combine to generate the global sum.

• In addition to a parallel construct, you will need the runtime
library routines
– int omp_set_num_threads();
– int omp_get_num_threads();
– int omp_get_thread_num();
– double omp_get_wtime();

29

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i, nthreads; double pi, sum[NUM_THREADS];

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel
{

int i, id,nthrds;
double x;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x);

}
}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;
}

Example: A simple SPMD pi program

Promote scalar to an array
dimensioned by number of
threads to avoid race
condition.

This is a common trick in
SPMD programs to create a
cyclic distribution of loop
iterations

Only one thread should copy the
number of threads to the global
value to make sure multiple threads
writing to the same address don’t
conflict.

30

SPMD: Single Program Mulitple Data

• Run the same program on P processing elements where P
can be arbitrarily large.

• Use the rank … an ID ranging from 0 to (P-1) … to select
between a set of tasks and to manage any shared data
structures.

This pattern is very general and has been used to support most (if not all) the
algorithm strategy patterns.

MPI programs almost always use this pattern … it is probably the most
commonly used pattern in the history of parallel programming.

Parallel Performance

31

32

Consider performance of parallel programs

Load Data Compute T1 Consume Results Compute TN
…

Timeseq(1) = Tload + N*Ttask + Tconsume

Compute N independent tasks on one processor

Ideally Cut
runtime by ~1/P
(Note: Parallelism
only speeds-up the
concurrent part)

…

Timepar(P) = Tload + (N/P)*Ttask + Tconsume

Compute N independent tasks with P processors

Load Data

Compute T1

Compute TN

Consume Results

Talking about performance

§Speedup: the increased
performance from running on P
processors.)(

)1(
)(

PTime
Time

PS
par

seq=

PPS =)(

PPS >)(

n Perfect Linear Speedup:
happens when no parallel
overhead and algorithm is
100% parallel.

n Super-linear Speedup: typically
due to cache effects … i.e. as P
grows, aggregate cache size
grows so more of the problem
fits in cache

So now you should understand my silly introduction slide.

34

We measure our
success as parallel
programmers by how
close we come to ideal
linear speedup.

A good parallel
programmer always
figures out when you
fall off the linear
speedup curve and
why that has
occurred.

Internal control variables and the
number of threads
• There are a few ways to control the number of threads.
• We’ve used the following construct (e.g. to request 12 threads):

– omp_set_num_threads(12)
• What does omp_set_num_threads() actually do?

– It resets an “internal control variable” the system queries to select the
default number of threads to request on subsequent parallel constructs.

• Is there an easier way to change this internal control variable …
perhaps one that doesn’t require re-compilation? Yes.
– When an OpenMP program starts up, it queries an environment variable

OMP_NUM_THREADS and sets the appropriate internal control variable
to the value of OMP_NUM_THREADS

– For example, to set the initial, default number of threads to request in
OpenMP from my apple laptop

> export OMP_NUM_THREADS=12 35

36

Exercise
• Go back to your parallel pi program and explore how well it

scales with the number of threads.
• Can you explain your performance with Amdahl’s law? If not

what else might be going on?

– int omp_get_num_threads();
– int omp_get_thread_num();
–double omp_get_wtime();
–omp_set_num_threads();
–export OMP_NUM_THREADS = N

An environment variable
to request N threads

Results*

37
*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

threads 1st

SPMD*
1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

*SPMD: Single Program Multiple Data

38

Why such poor scaling? False sharing
• If independent data elements happen to sit on the same cache line, each

update will cause the cache lines to “slosh back and forth” between threads
… This is called “false sharing”.

• If you promote scalars to an array to support creation of an SPMD program,
the array elements are contiguous in memory and hence share cache lines
… Results in poor scalability.

• Solution: Pad arrays so elements you use are on distinct cache lines.

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3]
Core 0 Core 1

L1 $ lines L1 $ lines

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3

Shared last level cache and connection to I/O and DRAM

39

#include <omp.h>
static long num_steps = 100000; double step;
#define PAD 8 // assume 64 byte L1 cache line size
#define NUM_THREADS 2
void main ()
{ int i, nthreads; double pi, sum[NUM_THREADS][PAD];

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel
{ int i, id,nthrds;

double x;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;
for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

x = (i+0.5)*step;
sum[id][0] += 4.0/(1.0+x*x);

}
}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step;
}

Example: Eliminate false sharing by padding the sum array

Pad the array so
each sum value is

in a different
cache line

Results*: pi program padded accumulator

40

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD
1st

SPMD
padded

1 1.86 1.86
2 1.03 1.01
3 1.08 0.69
4 0.97 0.53

Amdahl’s Law
• What is the maximum speedup you can expect from a parallel program?
• Approximate the runtime as a part that can be sped up with additional

processors and a part that is fundamentally serial.

seqpar Time
P
fractionparallelfractionserialPTime *)__()(+=

• If you had an unlimited number of processors:

• If serial_fraction is a and parallel_fraction is (1- a) then the speedup is:

S(P) =
Timeseq

Timepar (P)
=

Timeseq
(α +1−α

P
)*Timeseq

=
1

α +
1−α
P

¥®P

• The maximum possible speedup is:
a
1

=S Amdahl’s
Law

Amdahl’s Law

1

2

4

8

16

32

64

1 2 4 8 16 32 64

Sp
ee

du
p

Number of Processors

Parallelizable fraction of the program

0.999 0.99 0.95 0.9

43

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data environment
• Memory model
• Irregular Parallelism and tasks
• Recap
• Beyond the common core:

– Worksharing revisited
– Synchronization: More than you ever wanted to know
– Thread private data
– Going deeper into tasks

44

Synchronization

• High level synchronization included in the common core
(the full OpenMP specification has MANY more):
–critical
–barrier

Synchronization is used to
impose order constraints and
to protect access to shared
data

45

Synchronization: critical
• Mutual exclusion: Only one thread at a time can enter a

critical region.

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for(i=id;i<niters;i+=nthrds){

B = big_job(i);

#pragma omp critical
res += consume (B);

}
}

Threads wait
their turn – only
one at a time
calls consume()

46

Synchronization: barrier
• Barrier: a point in a program all threads much reach before any threads are

allowed to proceed.
• It is a “stand alone” pragma meaning it is not associated with user code … it

is an executable statement.
double Arr[8], Brr[8]; int numthrds;

omp_set_num_threads(8)

#pragma omp parallel

{ int id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id==0) numthrds = nthrds;

Arr[id] = big_ugly_calc(id, nthrds);

#pragma omp barrier
Brr[id] = really_big_and_ugly(id, nthrds, A);

}

Threads
wait until all
threads hit
the barrier.
Then they
can go on.

47

Exercise
• In your first Pi program, you probably used an array to

create space for each thread to store its partial sum.
• If array elements happen to share a cache line, this leads

to false sharing.
– Non-shared data in the same cache line so each update invalidates

the cache line … in essence “sloshing independent data” back and
forth between threads.

• Modify your “pi program” to avoid false sharing due to the
partial sum array.

int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
omp_set_num_threads();
#pragma parallel
#pragma critical

Pi program with false sharing*

48
*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

threads 1st

SPMD
1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

Recall that promoting sum to an
array made the coding easy,
but led to false sharing and
poor performance.

49

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{

int i, id, nthrds; double x, sum;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;

for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
#pragma omp critical

pi += sum * step;
}
}

Example: Using a critical section to remove impact of false sharing

Sum goes “out of scope” beyond the parallel
region … so you must sum it in here. Must
protect summation into pi in a critical region so
updates don’t conflict

No array, so
no false
sharing.

Create a scalar local
to each thread to
accumulate partial
sums.

Results*: pi program critical section

50

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD
1st

SPMD
padded

SPMD
critical

1 1.86 1.86 1.87
2 1.03 1.01 1.00
3 1.08 0.69 0.68
4 0.97 0.53 0.53

51

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{

int i, id,nthrds; double x;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;

for (i=id, sum=0.0;i< num_steps; i=i+nthreads){
x = (i+0.5)*step;
#pragma omp critical

pi += 4.0/(1.0+x*x);
}

}
pi *= step;
}

Example: Using a critical section to remove impact of false sharing

What would happen if
you put the critical
section inside the
loop?

Be careful where
you put a critical
section

52

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data environment
• Memory model
• Irregular Parallelism and tasks
• Recap
• Beyond the common core:

– Worksharing revisited
– Synchronization: More than you ever wanted to know
– Thread private data
– Going deeper into tasks

53

The loop worksharing constructs

• The loop worksharing construct splits up loop iterations
among the threads in a team

#pragma omp parallel

{
#pragma omp for

for (I=0;I<N;I++){
NEAT_STUFF(I);

}
}

Loop construct name:

•C/C++: for

•Fortran: do

The loop control index I is made
“private” to each thread by default.

Threads wait here until all
threads are finished with the

parallel loop before any proceed
past the end of the loop

54

Loop worksharing constructs
A motivating example

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
if (id == Nthrds-1)iend = N;
for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel
#pragma omp for

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

55

Loop worksharing constructs:
The schedule clause

• The schedule clause affects how loop iterations are mapped onto threads
– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.
– schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have
been handled.

– #pragma omp for schedule(dynamic, CHUNK)

Schedule Clause When To Use
STATIC Pre-determined and

predictable by the
programmer

DYNAMIC Unpredictable, highly
variable work per
iteration

Least work at
runtime :
scheduling done
at compile-time

Most work at
runtime :
complex
scheduling logic
used at run-time

56

Combined parallel/worksharing construct

• OpenMP shortcut: Put the “parallel” and the
worksharing directive on the same line

double res[MAX]; int i;
#pragma omp parallel
{

#pragma omp for
for (i=0;i< MAX; i++) {

res[i] = huge();
}

}

These are equivalent

double res[MAX]; int i;
#pragma omp parallel for

for (i=0;i< MAX; i++) {
res[i] = huge();

}

57

Working with loops

• Basic approach
– Find compute intensive loops
– Make the loop iterations independent ... So they can safely execute in

any order without loop-carried dependencies
– Place the appropriate OpenMP directive and test

int i, j, A[MAX];
j = 5;
for (i=0;i< MAX; i++) {

j +=2;
A[i] = big(j);

}

int i, A[MAX];
#pragma omp parallel for
for (i=0;i< MAX; i++) {

int j = 5 + 2*(i+1);
A[i] = big(j);

} Remove loop
carried
dependence

Note: loop index
“i” is private by
default

58

Reduction

• We are combining values into a single accumulation variable (ave) …
there is a true dependence between loop iterations that can’t be trivially
removed

• This is a very common situation … it is called a “reduction”.

• Support for reduction operations is included in most parallel programming
environments.

double ave=0.0, A[MAX]; int i;
for (i=0;i< MAX; i++) {

ave + = A[i];
}
ave = ave/MAX;

• How do we handle this case?

59

Reduction
• OpenMP reduction clause:

reduction (op : list)

• Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized depending

on the “op” (e.g. 0 for “+”).
– Updates occur on the local copy.
– Local copies are reduced into a single value and combined with

the original global value.
• The variables in “list” must be shared in the enclosing

parallel region.

double ave=0.0, A[MAX]; int i;
#pragma omp parallel for reduction (+:ave)
for (i=0;i< MAX; i++) {

ave + = A[i];
}
ave = ave/MAX;

60

OpenMP: Reduction operands/initial-values
• Many different associative operands can be used with reduction:
• Initial values are the ones that make sense mathematically.

Operator Initial value
+ 0
* 1
- 0

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value
& ~0
| 0

^ 0
&& 1
|| 0

Fortran Only

Operator Initial value
.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.

OpenMP includes user defined reductions
and array-sections as reduction variables

(we just don’t cover those topics here)

61

Exercise: Pi with loops

• Go back to the serial pi program and parallelize it with a loop
construct

• Your goal is to minimize the number of changes made to the
serial program.

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();

62

Example: Pi with a loop and a reduction
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel
{

double x;
#pragma omp for reduction(+:sum)

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
}

pi = step * sum;
}

Create a scalar local to each thread to hold
value of x at the center of each interval

Create a team of threads …
without a parallel construct, you’ll
never have more than one thread

Break up loop iterations
and assign them to
threads … setting up a
reduction into sum.
Note … the loop index is
local to a thread by default.

63

Example: Pi with a loop and a reduction
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{

double pi, sum = 0.0;
step = 1.0/(double) num_steps;

#pragma omp parallel for reduction(+:sum)
for (int i=0;i< num_steps; i++){

double x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

Using modern C style, we
put declarations close to
where they are used …
which lets me use the
parallel for construct.

Results*: pi with a loop and a reduction

64

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD
1st

SPMD
padded

SPMD
critical

PI Loop

1 1.86 1.86 1.87 1.91
2 1.03 1.01 1.00 1.02
3 1.08 0.69 0.68 0.80
4 0.97 0.53 0.53 0.68

65

The nowait clause
• Barriers are really expensive. You need to understand when

they are implied and how to skip them when its safe to do so.

double A[big], B[big], C[big];

#pragma omp parallel
{

int id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for

for(i=0;i<N;i++){C[i]=big_calc3(i,A);}
#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }
A[id] = big_calc4(id);

} implicit barrier at the end
of a parallel region

implicit barrier at the end of a for
worksharing construct

no implicit barrier
due to nowait

66

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data environment
• Memory model
• Irregular Parallelism and tasks
• Recap
• Beyond the common core:

– Worksharing revisited
– Synchronization: More than you ever wanted to know
– Thread private data
– Going deeper into tasks

67

Data environment:
Default storage attributes

• Shared memory programming model:
– Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables
– C: File scope variables, static
– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called

from parallel regions are PRIVATE
– Automatic variables within a statement block are PRIVATE.

68

double A[10];
int main() {
int index[10];
#pragma omp parallel

work(index);
printf(“%d\n”, index[0]);

}

extern double A[10];
void work(int *index) {
double temp[10];
static int count;
...

}

Data sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are
shared by all threads.

temp is local to each
thread

69

Data sharing:
Changing storage attributes

• One can selectively change storage attributes for constructs
using the following clauses* (note: list is a comma-separated list of variables)

–shared(list)
–private(list)
– firstprivate(list)

• These can be used on parallel and for constructs … other
than shared which can only be used on a parallel construct

• Force the programmer to explicitly define storage attributes
–default (none) default() can only be used

on parallel constructs

70

Data sharing: Private clause

int N = 1000;
extern void init_arrays(int N, double *A, double *B, double *C);

void example () {
int i, j;
double A[N][N], B[N][N], C[N][N];
init_arrays(N, *A, *B, *C);

#pragma omp parallel for private(j)
for (i = 0; i < 1000; i++)

for(j = 0; j<1000; j++)
C[i][j] = A[i][j] + B[i][j];

}

• private(var) creates a new local copy of var for each thread.

OpenMP makes the loop
control index on the
parallel loop (i) private by
default … but not for the
second loop (j)

71

Data sharing: Private clause

void wrong() {
int tmp = 0;

#pragma omp parallel for private(tmp)
for (int j = 0; j < 1000; ++j)

tmp += j;
printf(“%d\n”, tmp);

}

• private(var) creates a new local copy of var for each thread.
– The value of the private copies is uninitialized
– The value of the original variable is unchanged after the region

tmp was not
initialized

tmp is 0 here

When you need
to refer to the

variable tmp that
exists prior to the
construct, we call

it the original
variable.

72

Data sharing: Private and the original variable

int tmp;
void danger() {

tmp = 0;
#pragma omp parallel private(tmp)

work();
printf(“%d\n”, tmp);

}

• The original variable’s value is unspecified if it is referenced
outside of the construct

– Implementations may reference the original variable or a copy ….. a
dangerous programming practice!

– For example, consider what would happen if the compiler inlined work()?

extern int tmp;
void work() {

tmp = 5;
}

unspecified which
copy of tmptmp has unspecified value

Firstprivate clause

• Variables initialized from a shared variable
• C++ objects are copy-constructed

73

incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {

if ((i%2)==0) incr++;
A[i] = incr;

}

Each thread gets its own copy of
incr with an initial value of 0

74

Data sharing:
A data environment test

• Consider this example of PRIVATE and FIRSTPRIVATE

• Are A,B,C private to each thread or shared inside the parallel region?
• What are their initial values inside and values after the parallel region?

variables: A = 1,B = 1, C = 1
#pragma omp parallel private(B) firstprivate(C)

Inside this parallel region ...
l “A” is shared by all threads; equals 1
l “B” and “C” are private to each thread.

– B’s initial value is undefined
– C’s initial value equals 1

Following the parallel region ...
l B and C revert to their original values of 1
l A is either 1 or the value it was set to inside the parallel region

75

Data sharing: Default clause
• default(none): Forces you to define the storage attributes for

variables that appear inside the static extent of the construct … if you fail
the compiler will complain. Good programming practice!

• You can put the default clause on parallel and parallel + workshare
constructs.

The full OpenMP specification has other versions of the default clause, but they
are not used very often so we skip them in the common core

#include <omp.h>
int main()
{

int i, j=5; double x=1.0, y=42.0;
#pragma omp parallel for default(none) reduction(*:x)
for (i=0;i<N;i++){

for(j=0; j<3; j++)
x+= foobar(i, j, y);

}
printf(“ x is %f\n”,(float)x);

}

The static
extent is the
code in the

compilation unit
that contains
the construct.

The compiler would
complain about j and y,
which is important since

you don’t want j to be
shared

76

Exercise: Mandelbrot set area

• The supplied program (mandel.c) computes the area of a
Mandelbrot set.

• The program has been parallelized with OpenMP, but we
were lazy and didn’t do it right.

• Find and fix the errors (hint … the problem is with the data
environment).

• Once you have a working version, try to optimize the
program.
– Try different schedules on the parallel loop.
– Try different mechanisms to support mutual exclusion … do the

efficiencies change?

This exercises come from Mark Bull of EPCC (at University of Edinburgh)

The Mandelbrot area program
#include <omp.h>
define NPOINTS 1000
define MXITR 1000
struct d_complex{

double r; double i;
};
void testpoint(struct d_complex);
struct d_complex c;
int numoutside = 0;

int main(){
int i, j;
double area, error, eps = 1.0e-5;

#pragma omp parallel for private(c, j) firstpriivate(eps)
for (i=0; i<NPOINTS; i++) {

for (j=0; j<NPOINTS; j++) {
c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;
testpoint(c);

}
}

area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS);

error=area/(double)NPOINTS;
}

77

void testpoint(struct d_complex c){
struct d_complex z;

int iter;
double temp;

z=c;
for (iter=0; iter<MXITR; iter++){

temp = (z.r*z.r)-(z.i*z.i)+c.r;
z.i = z.r*z.i*2+c.i;
z.r = temp;
if ((z.r*z.r+z.i*z.i)>4.0) {
#pragma omp critical

numoutside++;
break;

}
}

}

• eps was not initialized
• Protect updates of numoutside
• Which value of c does testpoint()

see? Global or private?

78

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data environment
• Memory model
• Irregular Parallelism and tasks
• Recap
• Beyond the common core:

– Worksharing revisited
– Synchronization: More than you ever wanted to know
– Thread private data
– Going deeper into tasks

79

OpenMP memory model

l Multiple copies of data may be present in various levels of cache, or in registers

l OpenMP supports a shared memory model
l All threads share an address space, but it can get complicated:

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

a

a

. . .

80

OpenMP and relaxed consistency

• OpenMP supports a relaxed-consistency
shared memory model
– Threads can maintain a temporary view of shared memory

that is not consistent with that of other threads

– These temporary views are made consistent only at certain
points in the program

– The operation that enforces consistency is called the flush operation

81

Flush operation

• Defines a sequence point at which a thread is guaranteed to
see a consistent view of memory
– All previous read/writes by this thread have completed and are visible

to other threads
– No subsequent read/writes by this thread have occurred

• A flush operation is analogous to a fence in other shared
memory APIs

82

flush example

l Flush forces data to be updated in memory so other threads see the most
recent value

double A;

A = compute();

#pragma omp flush(A)

// flush to memory to make sure other
// threads can pick up the right value

Note: OpenMP’s flush is analogous to a fence in other shared memory APIs

83

What is the BIG DEAL with flush?

• Compilers routinely reorder instructions implementing a
program
– Can better exploit the functional units, keep the machine busy, hide

memory latencies, etc.
• Compiler generally cannot move instructions:

– Past a barrier
– Past a flush on all variables

• But it can move them past a flush with a list of variables so
long as those variables are not accessed

• Keeping track of consistency when flushes are used can be
confusing … especially if “flush(list)” is used.

Note: the flush operation does not actually synchronize different
threads. It just ensures that a thread’s variables are made
consistent with main memory

84

Flush and synchronization

• A flush operation is implied by OpenMP synchronizations,
e.g.,
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions
….
(but not at entry to worksharing regions)

WARNING:
If you find your self wanting to write code with explicit flushes, stop and get help. It is

very difficult to manage flushes on your own. Even experts often get them wrong.

This is why we defined OpenMP constructs to automatically apply flushes most
places where you really need them.

85

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data environment
• Memory model
• Irregular Parallelism and tasks
• Recap
• Beyond the common core:

– Worksharing revisited
– Synchronization: More than you ever wanted to know
– Thread private data
– Going deeper into tasks

86

Irregular parallelism
• Let’s call a problem “irregular” when one or both of the

following hold:
– Data Structures are sparse
– Control structures are not basic for-loops

• Example: Traversing Linked lists:

• Using what we’ve learned so far, traversing a linked list in
parallel using OpenMP is difficult.

p = listhead ;
while (p) {
process(p);
p=p->next;

}

87

Exercise: traversing linked lists
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at
each node.

• Parallelize this program selecting from the following list of
constructs:

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
schedule(static[,chunk]) or schedule(dynamic[,chunk])
private(), firstprivate(), default(none)

• Hint: Just worry about the contents of main(). You don’t need to make
any changes to the “list functions”

88

Linked lists with OpenMP (without tasks)
• See the file solutions/Linked_notasks.c

while (p != NULL) {
p = p->next;
count++;

}
p = head;
for(i=0; i<count; i++) {

parr[i] = p;
p = p->next;

}
#pragma omp parallel
{

#pragma omp for schedule(static,1)
for(i=0; i<count; i++)

processwork(parr[i]);
}

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Default schedule Static,1
One Thread 48 seconds 45 seconds
Two Threads 39 seconds 28 seconds

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

89

Linked lists with OpenMP pre 3.0
• See the file solutions/Linked_notasks.c

while (p != NULL) {
p = p->next;
count++;

}
p = head;
for(i=0; i<count; i++) {

parr[i] = p;
p = p->next;

}
#pragma omp parallel
{

#pragma omp for schedule(static,1)
for(i=0; i<count; i++)

processwork(parr[i]);
}

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Default schedule Static,1
One Thread 48 seconds 45 seconds
Two Threads 39 seconds 28 seconds

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

With so much code to add and three
passes through the data, this is really ugly.

There has got to be a better way to do this

What are tasks?

• Tasks are independent units of work

• Tasks are composed of:
– code to execute
– data to compute with

• Threads are assigned to perform the
work of each task.
– The thread that encounters the task

construct may execute the task immediately.
– The threads may defer execution until later

Serial Parallel

What are tasks?

• The task construct includes a structured
block of code

• Inside a parallel region, a thread
encountering a task construct will
package up the code block and its data
for execution

• Tasks can be nested: i.e. a task may
itself generate tasks. Serial Parallel

A common Pattern is to have one thread create the tasks while the
other threads wait at a barrier and execute the tasks

92

Single worksharing Construct

• The single construct denotes a block of code that is
executed by only one thread (not necessarily the master
thread).

• A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel
{

do_many_things();
#pragma omp single

{ exchange_boundaries(); }
do_many_other_things();

}

Task Directive

#pragma omp parallel
{
#pragma omp single
{

#pragma omp task
fred();

#pragma omp task
daisy();

#pragma omp task
billy();

}
}

One Thread
packages tasks

Create some threads

Tasks executed by
some thread in some
order

All tasks complete before this barrier is released

#pragma omp task [clauses]

structured-block

Exercise: Simple tasks
• Write a program using tasks that will “randomly” generate one of two

strings:
– “I think “ “race” “car” “s are fun”
– “I think “ “car” “race” “s are fun”

• Hint: use tasks to print the indeterminate part of the output (i.e. the “race”
or “car” parts).

• This is called a “Race Condition”. It occurs when the result of a program
depends on how the OS schedules the threads.

• NOTE: A “data race” is when threads “race to update a shared variable”.
They produce race conditions. Programs containing data races are
undefined (in OpenMP but also ANSI standards C++’11 and beyond).

#pragma omp parallel
#pragma omp task
#pragma omp single

94

Racey cars: solution
#include <stdio.h>
#include <omp.h>
int main()
{ printf("I think");

#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
printf(" car");

#pragma omp task
printf(" race");

}
}
printf("s");
printf(" are fun!\n");

} 95

Data scoping with tasks
• Variables can be shared, private or firstprivate with respect to

task

• These concepts are a little bit different compared with
threads:
– If a variable is shared on a task construct, the references to it inside

the construct are to the storage with that name at the point where the
task was encountered

– If a variable is private on a task construct, the references to it inside
the construct are to new uninitialized storage that is created when the
task is executed

– If a variable is firstprivate on a construct, the references to it inside the
construct are to new storage that is created and initialized with the
value of the existing storage of that name when the task is
encountered

96

97

Data scoping defaults
• The behavior you want for tasks is usually firstprivate, because the task

may not be executed until later (and variables may have gone out of
scope)
– Variables that are private when the task construct is encountered are firstprivate by

default
• Variables that are shared in all constructs starting from the innermost

enclosing parallel construct are shared by default

#pragma omp parallel shared(A) private(B)
{

...
#pragma omp task

{
int C;
compute(A, B, C);

}
}

A is shared
B is firstprivate
C is private

98

Exercise: traversing linked lists
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at
each node.

• Parallelize this program selecting from the following list of
constructs:

#pragma omp parallel
#pragma omp single
#pragma omp task
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
private(), firstprivate()

• Hint: Just worry about the contents of main(). You don’t need to make
any changes to the “list functions”

99

Parallel linked list traversal
#pragma omp parallel
{
#pragma omp single
{
p = listhead ;
while (p) {

#pragma omp task firstprivate(p)
{
process (p);

}
p=next (p) ;

}
}

}

makes a copy of p
when the task is
packaged

Only one thread
packages tasks

100

When/where are tasks complete?

• At thread barriers (explicit or implicit)
– all tasks generated inside a region must complete at the next barrier

encountered by the threads in that region. Common examples:
– Tasks generated inside a single construct: all tasks complete before

exiting the barrier on the single.
– Tasks generated inside a parallel region: all tasks complete before exiting

the barrier at the end of the parallel region.

• At taskwait directive
– i.e. Wait until all tasks defined in the current task have completed.

#pragma omp taskwait

– Note: applies only to tasks generated in the current task, not to
“descendants” .

Example

101

#pragma omp parallel
{
#pragma omp single
{

#pragma omp task
fred();

#pragma omp task
daisy();

#pragma omp taskwait
#pragma omp task

billy();
}

}

fred() and daisy()
must complete before
billy() starts, but
this does not include
tasks created inside
fred() and daisy()

All tasks including those created
inside fred() and daisy() must
complete before exiting this barrier

Example

102

#pragma omp parallel
{
#pragma omp single nowait
{

#pragma omp task
fred();

#pragma omp task
daisy();

#pragma omp taskwait
#pragma omp task

billy();
}

}

The barrier at the end of the
single is expensive and not
needed since you get the
barrier at the end of the
parallel region. So use
nowait to turn it off.

All tasks including those created
inside fred() and daisy() must
complete before exiting this barrier

Example: Fibonacci numbers

• Fn = Fn-1 + Fn-2

• Inefficient O(n2) recursive
implementation!

int fib (int n)
{

int x,y;
if (n < 2) return n;

x = fib(n-1);
y = fib (n-2);
return (x+y);

}

Int main()
{

int NW = 5000;
fib(NW);

}

Parallel Fibonacci

104

• Binary tree of tasks

• Traversed using a recursive
function

• A task cannot complete until all
tasks below it in the tree are
complete (enforced with taskwait)

• x,y are local, and so by default
they are private to current task

– must be shared on child tasks so they
don’t create their own firstprivate
copies at this level!

int fib (int n)
{ int x,y;

if (n < 2) return n;

#pragma omp task shared(x)
x = fib(n-1);

#pragma omp task shared(y)
y = fib (n-2);

#pragma omp taskwait
return (x+y);

}

Int main()
{ int NW = 5000;

#pragma omp parallel
{

#pragma omp single
fib(NW);

}
}

Divide and conquer

• Split the problem into smaller sub-problems; continue until
the sub-problems can be solve directly

n 3 Options:
¨ Do work as you split

into sub-problems
¨ Do work only at the

leaves
¨ Do work as you

recombine

106

Exercise: Pi with tasks

• Go back to the original pi.c program
– Parallelize this program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp single
double omp_get_wtime()
int omp_get_thread_num();
int omp_get_num_threads();

• Hint: first create a recursive pi program and verify that it works. Think
about the computation you want to do at the leaves. If you go all
the way down to one iteration per leaf-node, won’t you just swamp
the system with tasks?

Program: OpenMP tasks
#include <omp.h>
static long num_steps = 100000000;
#define MIN_BLK 10000000
double pi_comp(int Nstart,int Nfinish,double step)
{ int i,iblk;

double x, sum = 0.0,sum1, sum2;
if (Nfinish-Nstart < MIN_BLK){

for (i=Nstart;i< Nfinish; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
}
else{

iblk = Nfinish-Nstart;
#pragma omp task shared(sum1)

sum1 = pi_comp(Nstart, Nfinish-iblk/2,step);
#pragma omp task shared(sum2)

sum2 = pi_comp(Nfinish-iblk/2, Nfinish, step);
#pragma omp taskwait

sum = sum1 + sum2;
}return sum;

} 107

int main ()
{

int i;
double step, pi, sum;
step = 1.0/(double) num_steps;
#pragma omp parallel
{

#pragma omp single
sum =

pi_comp(0,num_steps,step);
}
pi = step * sum;

}

Results*: pi with tasks

108

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st SPMD SPMD
critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52

109

Using tasks

• Don’t use tasks for things already well supported by
OpenMP
–e.g. standard do/for loops
– the overhead of using tasks is greater

• Don’t expect miracles from the runtime
–best results usually obtained where the user controls the

number and granularity of tasks

110

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data environment
• Memory model
• Irregular Parallelism and tasks
• Recap
• Beyond the common core:

– Worksharing revisited
– Synchronization: More than you ever wanted to know
– Thread private data
– Going deeper into tasks

OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved
execution across threads.

void omp_set_num_threads()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.
SPMD pattern: Create threads with a parallel region and split up
the work using the number of threads and the thread ID.

double omp_get_wtime() Speedup and Amdahl's law.
False sharing and other performance issues.

setenv OMP_NUM_THREADS N Setting the internal control variable for the default number of
threads with an environment variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.
Revisit interleaved execution.

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

nowait Disabling implied barriers on workshare constructs, the high cost of
barriers, and the flush concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 20 items

111

There is much more to OpenMP than the
Common Core.

• Synchronization mechanisms
– locks, flush and several forms of atomic

• Data management
– lastprivate, threadprivate, default(private|shared)

• Fine grained task control
– dependencies, tied vs. untied tasks, task groups, task loops …

• Vectorization constructs
– simd, uniform, simdlen, inbranch vs. nobranch, ….

• Map work onto an attached device
– target, teams distribute parallel for, target data …

• … and much more. The OpenMP 5.0 specification is over
600 pages (not counting tools interface)!!!

112

Don’t become overwhelmed. Master the common core and move on to other
constructs when you encounter problems that require them.

114

Fork-join

• Use when:
– Target platform has a shared address space
– Dynamic task parallelism

• Particularly useful when you have a serial program to
transform incrementally into a parallel program

• Solution:
1. A computation begins and ends as a single thread.
2. When concurrent tasks are desired, additional threads are forked.
3. The thread carries out the indicated task,
4. The set of threads recombine (join)

Pthreads, OpenMP are based on this pattern.

115

SPMD: Single Program Mulitple Data

• Run the same program on P processing elements where P
can be arbitrarily large.

• Use the rank … an ID ranging from 0 to (P-1) … to select
between a set of tasks and to manage any shared data
structures.

This pattern is very general and has been used to support most (if not all) the
algorithm strategy patterns.

MPI programs almost always use this pattern … it is probably the most
commonly used pattern in the history of parallel programming.

117

Loop-level parallelism
• Collections of tasks are defined as iterations of one or more

loops.
• Loop iterations are divided between a collection of processing

elements to compute tasks concurrently. Key elements:
– identify compute intensive loops
– Expose concurrency by removing/managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop

construct/directive.

This design pattern is also heavily used with data parallel design
patterns. OpenMP programmers commonly use this pattern.

#pragma parallel for shared(Results) schedule(dynamic)

For(i=0;i<N;i++){
Do_work(i, Results);

}

Divide and conquer

• Split the problem into smaller sub-problems; continue until
the sub-problems can be solve directly

n 3 Options:
¨ Do work as you split

into sub-problems
¨ Do work only at the

leaves
¨ Do work as you

recombine

Resources
• www.openmp.org has a wealth of helpful resources

123

Including a comprehensive collection of
examples of code using the OpenMP constructs 123

http://www.openmp.org/

To learn OpenMP:
• An exciting new book that

Covers the Common Core of
OpenMP plus a few key
features beyond the common
core that people frequently
use

• It’s geared towards people
learning OpenMP, but as
one commentator put it …
everyone at any skill level
should read the memory
model chapters.

• Available from MIT Press in
November of 2019

124

Books about OpenMP

125

A great new book that
covers OpenMP
features beyond

OpenMP 2.5

126

Background references

l A book about how to “think
parallel” with examples in
OpenMP, MPI and java

A great book that explores key
patterns with Cilk, TBB,
OpenCL, and OpenMP (by
McCool, Robison, and Reinders)

127

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Thread Affinity and Data Locality
– Thread Private Data
– Synchronization: More than you ever wanted to know
– Programming your GPU with OpenMP

128

The Loop Worksharing Constructs

• The loop worksharing construct splits up loop iterations
among the threads in a team

#pragma omp parallel

{
#pragma omp for

for (I=0;I<N;I++){
NEAT_STUFF(I);

}
}

Loop construct name:

•C/C++: for

•Fortran: do

The variable I is made “private” to each
thread by default. You could do this
explicitly with a “private(I)” clause

129

Loop Worksharing Constructs:
The Schedule Clause

• The schedule clause affects how loop iterations are mapped onto threads
– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.
– schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have
been handled.

– schedule(guided[,chunk])
– Threads dynamically grab blocks of iterations. The size of the block starts

large and shrinks down to size “chunk” as the calculation proceeds.
– schedule(runtime)

– Schedule and chunk size taken from the OMP_SCHEDULE environment
variable (or the runtime library).

– schedule(auto)
– Schedule is left up to the runtime to choose (does not have to be any of the

above).

OpenMP 4.5 added modifiers monotonic, nonmontonic and simd.

130

Schedule Clause When To Use

STATIC Pre-determined and
predictable by the
programmer

DYNAMIC Unpredictable, highly
variable work per
iteration

GUIDED Special case of dynamic
to reduce scheduling
overhead

AUTO When the runtime can
“learn” from previous
executions of the same
loop

Loop Worksharing Constructs:
The Schedule Clause

Least work at
runtime :
scheduling done
at compile-time

Most work at
runtime :
complex
scheduling logic
used at run-time

#pragma omp parallel for collapse(2)
for (int i=0; i<N; i++) {
for (int j=0; j<M; j++) {

.....
}

}

131

Nested Loops

• Will form a single loop of length NxM and then parallelize
that.

• Useful if N is O(no. of threads) so parallelizing the outer loop
makes balancing the load difficult.

Number of loops
to be
parallelized,
counting from
the outside

l For perfectly nested rectangular loops we can parallelize
multiple loops in the nest with the collapse clause:

132

Sections Worksharing Construct
• The Sections worksharing construct gives a different

structured block to each thread.

#pragma omp parallel
{

#pragma omp sections
{
#pragma omp section

X_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}

}

By default, there is a barrier at the end of the “omp sections”.
Use the “nowait” clause to turn off the barrier.

Array Sections with Reduce
#include <stdio.h>
#define N 100
void init(int n, float (*b)[N]);
int main(){
int i,j; float a[N], b[N][N]; init(N,b);
for(i=0; i<N; i++) a[i]=0.0e0;

#pragma omp parallel for reduction(+:a[0:N]) private(j)
for(i=0; i<N; i++){

for(j=0; j<N; j++){
a[j] += b[i][j];

}
}
printf(" a[0] a[N-1]: %f %f\n", a[0], a[N-1]);
return 0;

133

Works the same as any
other reduce … a private
array is formed for each
thread, element wise
combination across
threads and then with
original array at the end

134

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Thread Affinity and Data Locality
– Thread Private Data
– Synchronization: More than you ever wanted to know
– Programming your GPU with OpenMP

OpenMP basic definitions: Basic Solution stack

In learning OpenMP, you consider a Symmetric Multiprocessor (SMP) ….
i.e. lots of threads with “equal cost access” to memory

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User
U

se
r l

ay
er

Shared address space (SMP)

H
W

. . .

A Typical CPU Node in an HPC System
2 Intel® Xeon™ E5-2698 v3 CPUs (Haswell) per node (launched Q3’14)

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$D
D

R
D

D
R

D
D

R
D

D
RPC

Ie

PC
Ie

Q
PI

Q
PI

Q
PI

Q
PI

sw
itc
h

sw
itc
h

sw
itc
h

sw
itc
h

Socket 0 Socket 1

L2$

L1D$ L1I$

ALU

HT1HT0

As configured for Cori at NERSC: CPUs at 2.3 GHz, 2 16 GB DIMMs per DDR memory
controller, 16 cores per CPU. 2 CPUs connected by a high-speed interconnect (QPI)

2 Hardware threads per core
Intel® AVX2 (256 bit Vector unit)
L1$ instruction and data: 32 KB
Unified L2$ 256 KB

40 MB
shared L3$

Does this look like an SMP node to you?

137

There may be a single address space, but there are multiple levels of
non-uniformity to the memory. This is a Non-Uniform Memory Architecture (NUMA)

Even a single CPU is properly considered a NUMA architecture

Exploring your NUMA world: numactl
• numactl is a Linux command to control the NUMA policy

• You can use it to learn about the NUMA features of your system:

• On Cori at NERSC (Two 16 core “Haswell” Intel® Xeon™ CPUs per node)

138

% numactl -H
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
node 0 size: 64430 MB
node 0 free: 63002 MB
node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 48 49 50 51 52 53 54 55 56 57 58 59 60 61
62 63
node 1 size: 64635 MB
node 1 free: 63395 MB
node distances:node 0 1
0: 10 21
1: 21 10

Shows relative costs …. In this case, there’s
a factor of two in the cost of the local (on
CPU) DRAM vs going to the other socket

On some systems, this information is found with the Linux command: lscpu

Exploring your NUMA world: NUMACTL
• numactl shows you how the OS processor-numbers map

onto the physical cores of the chip:

139
2 Intel® Xeon™ E5-2698 v3 CPUs (Haswell) per node (launched Q3’14)

Writing NUMA-aware OpenMP code

• Memory Affinity
– Maximize reuse of data in the cache hierarchy
– Maximize reuse of data in memory pages

• Control the places where threads are mapped
– Place threads onto cores to optimize performance
– Keep threads working on similar data close to each other
– Maximize utilization of memory controllers by spreading threads out

• Processor binding … Disable thread migration
– By Default, an OS migrates threads to maximize utilization of

resources on the chip.
– To Optimize for NUMA, we need to turn off thread migration … bind

threads to a processor/core

140

Memory Affinity: “First Touch” Policy

Red: step 1.1 + step 2. No First Touch
Blue: step 1.2 + step 2. First Touch

Step 1.1 Initialization
by master thread only
for (j=0; j<VectorSize; j++) {
a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

Step 1.2 Initialization
by all threads
#pragma omp parallel for
for (j=0; j<VectorSize; j++) {
a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

Step 2 Compute
#pragma omp parallel for
for (j=0; j<VectorSize; j++) {
a[j]=b[j]+d*c[j];}

Memory affinity is defined at
initialization.

Memory will be local to the thread
which initializes it.

This is called first touch policy.

141*OMP_PROC_BIND=close to be described later

Writing NUMA-aware OpenMP code

• Memory Affinity
– Maximize reuse of data in the cache hierarchy
– Maximize reuse of data in memory pages

• Control the places where threads can run
– Keep threads working on similar data close to each other
– Maximize utilization of memory controllers by spreading threads out

• Processor binding … Disable thread migration
– By Default, an OS migrates threads to maximize utilization of

resources on the chip.
– To OPlace threads onto cores to optimize performance
– ptimize for NUMA, we need to turn off thread migration … bind

threads to a processor/core

142

The concept of places

• A place: numbers between { }:
export OMP_PLACES=“{0,1,2,3}”

• A place defines where threads can run

143

• The Operating System assigns logical
CPU IDs to hardware threads.

• Recall … the linux command
numactl –H returns those numbers.

> export OMP_PLACES “{0, 3, 15, 12, 19, 16, 28, 31}”
> export NUM_THREADS= 6

#pragma omp parallel
{

// do a bunch of cool stuff

}

The concept of places

• Set with an environment variable:
export OMP_PLACES=“{0,1,2,3}”

• Can also specify with {lower-bound:length:stride}

OMP_PLACES=“{0,1,2,3}” à OMP_PLACES=“{0:4:1}” à OMP_PACES=“{0:4}”

• Can define multiple places:

OMP_PLACES=“{0,1,2,3},{4,6,8},{9,10,11,12}”

OMP_PLACES=“{0,4},{4,3:2},{9:4}”
144

Default
Stride is 1

These are
equivalent

• The Operating System assigns logical
CPU IDs to hardware threads.

• Recall … the linux command
numactl –H returns those numbers.

The concept of places

• Set with an environment variable:
export OMP_PLACES=“{0,1,2,3}”

• Can also specify with {lower-bound:length:stride}

OMP_PLACES=“{0,1,2,3}” à OMP_PLACES=“{0:4:1}” à OMP_PACES=“{0:4}”

• Can define multiple places:

OMP_PLACES=“{0,1,2,3},{4,6,8},{9,10,11,12}”

OMP_PLACES=“{0,4},{4,3:2},{9:4}”
145

Default
Stride is 1

These are
equivalent

• The Operating System assigns logical
CPU IDs to hardware threads.

• Recall … the linux command
numactl –H returns those numbers.

Programmers can use OMP_PLACES for detailed control
over the execution-units threads utilize. BUT …

• The rules for mapping onto physical execution units
are complicated.

• PLACES expressed as numbers is non-portable

There has to be an easier and more portable way to describe
places

OMP_PLACES:

• OMP_PLACES can use the following abstract names:
– threads: each place corresponds to a single hardware thread on the

target machine.
– cores: each place corresponds to a single core (having one or more

hardware threads) on the target machine.
– sockets: each place corresponds to a single socket (consisting of one

or more cores) on the target machine.
• Examples:

– export OMP_PLACES=threads
– export OMP_PLACES=cores

146

Writing NUMA-aware OpenMP code

• Memory Affinity
– Maximize reuse of data in the cache hierarchy
– Maximize reuse of data in memory pages

• Control the places where threads can run
– Keep threads working on similar data close to each other
– Maximize utilization of memory controllers by spreading threads out

• Processor binding … Disable thread migration
– By Default, an OS migrates threads to maximize utilization of

resources on the chip.
– To OPlace threads onto cores to optimize performance
– ptimize for NUMA, we need to turn off thread migration … bind

threads to a processor/core

147

Processor binding

• Control with the environment variable OMP_PROC_BIND
• The following values are recognized

– true: Thread affinity enabled … threads stay put once they are placed
on a system.

– false: thread affinity disabled … the OS can migrate threads at will
– master: threads are assigned to the same processor/core as the

master thread of the team.
– close: threads assigned “round robin” to places incremented by one

starting from the place where the master thread of the team is located.
– spread: threads are spread out evenly among the available places

• The values master, close and spread imply the value true

• Example:
export OMP_PROC_BIND=close

148

Processor binding: Example

• Consider a CPU with 4 cores, 2 hyperthreads per core, and
OMP_NUM_THREADS=4

• close: Bind threads as close to each other as possible

• spread: Bind threads as far apart as possible.

Node Core 0 Core 1 Core 2 Core 3

HT1 HT2 HT1 HT2 HT1 HT2 HT1 HT2

Thread 0 1 2 3

Node Core 0 Core 1 Core 2 Core 3

HT1 HT2 HT1 HT2 HT1 HT2 HT1 HT2

Thread 0 1 2 3

149

OMP_PROC_BIND Choices for STREAM

OMP_NUM_THREADS=32
OMP_PLACES=threads

OMP_PROC_BIND=close
Threads 0 to 31 bind to
CPUs
0,32,1,33,2,34,…15,47. All
threads are in the first
socket. The second socket
is idle. Not optimal.

OMP_PROC_BIND=spread
Threads 0 to 31 bind to
CPUs 0,1,2,… to 31. Both
sockets and memory are
used to maximize memory
bandwidth.

Blue: OMP_PROC_BIND=close
Red: OMP_PROC_BIND=spread
Both with First Touch

150

Affinity Clauses for OpenMP Parallel
Construct

• The “num_threads” and “proc_bind” clauses can be used
– The values set with these clauses take precedence over values set

by runtime environment variables
• Helps code portability
• Examples:

– C/C++:
#pragma omp parallel num_threads(2) proc_bind(spread)

– Fortran:
!$omp parallel num_threads (2) proc_bind (spread)
...
!$omp end parallel

151

Nested Parallel regions

#include <omp.h>
#include <stdio.h>
void report_num_threads(int level)
{

#pragma omp single {
printf("Level %d: number of threads in the

team: %d\n", level, omp_get_num_threads());
}

}
int main()
{

omp_set_dynamic(0);
#pragma omp parallel num_threads(2) {

report_num_threads(1);
#pragma omp parallel num_threads(2) {

report_num_threads(2);
#pragma omp parallel num_threads(2) {

report_num_threads(3);
}

}
}
return(0);

}

% a.out
Level 1: number of threads in the team: 2
Level 2: number of threads in the team: 1
Level 3: number of threads in the team: 1
Level 2: number of threads in the team: 1
Level 3: number of threads in the team: 1

% export OMP_NESTED=true
% export OMP_MAX_ACTIVE_LEVELS=3
% a.out
Level 1: number of threads in the team: 2
Level 2: number of threads in the team: 2
Level 2: number of threads in the team: 2
Level 3: number of threads in the team: 2
Level 3: number of threads in the team: 2
Level 3: number of threads in the team: 2
Level 3: number of threads in the team: 2

Level 0: P0
Level 1: P0 P1
Level 2: P0 P2; P1 P3
Level 3: P0 P4; P2 P5; P1 P6; P3 P7

152

Process and Thread Affinity in Nested OpenMP

• A combination of OpenMP environment variables and run time flags are needed
for different compilers and different batch schedulers on different systems.

• Use num_threads clause in source codes to set threads for nested regions.
• For most other non-nested regions, use OMP_NUM_THREADS environment

variable for simplicity and flexibility.

Example: Use Intel compiler with SLURM on Cori Haswell:
export OMP_NESTED=true
export OMP_MAX_ACTIVE_LEVELS=2
export OMP_NUM_THREADS=4,4
export OMP_PROC_BIND=spread,close
export OMP_PLACES=threads
srun -n 4 -c 16 –cpu_bind=cores ./nested.intel.cori

spread

close

Illustration of a system with:
2 sockets, 4 cores per socket,
4 hyper-threads per core

153

Summary for Thread Affinity and Data Locality
• Achieving best data locality, and optimal process and thread affinity is

crucial in getting good performance with OpenMP, yet it is not
straightforward to do so.
– Understand the node architecture with tools such as “numactl -H” first.
– Always use simple examples with the same settings for your real application

to verify first.
• Exploit first touch data policy, optimize code for cache locality.
• Pay special attention to avoid false sharing.
• Put threads far apart (spread) may improve aggregated memory

bandwidth and available cache size for your application, but may also
increase synchronization overhead. And putting threads “close” have
the reverse impact as “spread”.

• For nested OpenMP, set OMP_PROC_BIND=spread,close is generally
recommended.

154

155

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Thread affinity and data locality
– Thread Private Data
– Synchronization: More than you ever wanted to know
– Programming your GPU with OpenMP

156

Data Sharing: Threadprivate

• Makes global data private to a thread
– Fortran: COMMON blocks
– C: File scope and static variables, static class members

• Different from making them PRIVATE
– with PRIVATE global variables are masked.
– THREADPRIVATE preserves global scope within each thread

• Threadprivate variables can be initialized using COPYIN
or at time of definition (using language-defined
initialization capabilities)

157

A Threadprivate Example (C)

int counter = 0;
#pragma omp threadprivate(counter)

int increment_counter()
{

counter++;
return (counter);

}

Use threadprivate to create a counter for each thread.

158

Data Copying: Copyin

parameter (N=1000)
common/buf/A(N)

!$OMP THREADPRIVATE(/buf/)

!$ Initialize the A array
call init_data(N,A)

!$OMP PARALLEL COPYIN(A)

… Now each thread sees threadprivate array A initialized
… to the global value set in the subroutine init_data()

!$OMP END PARALLEL

end

You initialize threadprivate data using a copyin
clause.

159

Data Copying: Copyprivate

#include <omp.h>
void input_parameters (int, int); // fetch values of input parameters
void do_work(int, int);

void main()
{

int Nsize, choice;

#pragma omp parallel private (Nsize, choice)
{

#pragma omp single copyprivate (Nsize, choice)
input_parameters (*Nsize, *choice);

do_work(Nsize, choice);
}

}

Used with a single region to broadcast values of privates from one member of a
team to the rest of the team

160

Exercise: Monte Carlo Calculations
Using random numbers to solve tough problems

• Sample a problem domain to estimate areas, compute probabilities,
find optimal values, etc.

• Example: Computing π with a digital dart board:

l Throw darts at the circle/square.
l Chance of falling in circle is

proportional to ratio of areas:
Ac = r2 * π
As = (2*r) * (2*r) = 4 * r2

P = Ac/As = π /4
l Compute π by randomly

choosing points; π is four times
the fraction that falls in the circle

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148

161

Exercise: Monte Carlo pi (cont)

• We provide three files for this exercise
– pi_mc.c: the Monte Carlo method pi program
– random.c: a simple random number generator
– random.h: include file for random number generator

• Create a parallel version of this program without changing
the interfaces to functions in random.c
– This is an exercise in modular software … why should a user of your

parallel random number generator have to know any details of the
generator or make any changes to how the generator is called?

– The random number generator must be thread-safe.
• Extra Credit:

– Make your random number generator numerically correct (non-
overlapping sequences of pseudo-random numbers).

162

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Thread Affinity and Data Locality
– Thread Private Data
– Synchronization: More than you ever wanted to know
– Programming your GPU with OpenMP

163

Synchronization

• High level synchronization:
–critical
–barrier
–atomic
–ordered

• Low level synchronization
– flush
– locks (both simple and nested)

Synchronization is used to
impose order constraints and
to protect access to shared
data

Covered earlier

164

Synchronization: Atomic

• Atomic provides mutual exclusion but only applies to the update
of a memory location (the update of X in the following example)

#pragma omp parallel

{
double tmp, B;

B = DOIT();

#pragma omp atomic
X += big_ugly(B);

}

#pragma omp parallel

{
double B;

B = DOIT();

#pragma omp atomic
X += big_ugly(B);

}

165

Synchronization: Atomic

• Atomic provides mutual exclusion but only applies to the update
of a memory location (the update of X in the following example)

#pragma omp parallel

{
double B, tmp;

B = DOIT();

tmp = big_ugly(B);

#pragma omp atomic
X += tmp;

}

Atomic only protects the
read/update of X

Additional forms of atomic were added in 3.1 (discussed later)

166

Exercise

• In your first Pi program, you probably used an array to create
space for each thread to store its partial sum.

• You fixed this by using a critical section instead of updating
the array (remember .. the array you created by promoting
the scalar “sum” to an array).

• Use and atomic instead. Does the performance improve?

Parallel Loop with Ordered Region
• An ordered clause on a loop worksharing construct
– indicates that the loop contains an ordered region

• The ordered construct defines an ordered region
– The Statements in ordered region execute in iteration order

#pragma omp for ordered
for (i=0; i<N; i++) {

float res = work(i);
#pragma omp ordered
{

printf("result for %d was %f\n", i, res);
fflush(stdout);

}
}

167

Parallelizing Nested Loops

• Pattern of dependencies between elements of x prevent
straightforward parallelization

• is there a way to manage the synchronization so we can
parallelize this loop?

#pragma omp parallel for collapse(2)
for (r=1; r<N; r++) {

for (c=1; c<N; c++) {

x[r][c] += fn(x[r-1][c], x[r][c-1]);

}
}

168

• Will these nested parallel loops execute correctly?

x[r][c]

x[r-1][c]

x[r][c-1]

An array section of x

Ordered Stand-Alone Directive
• Specifies cross-iteration dependencies in a doacross loop nest

… i.e. loop level parallelism over nested loops with a regular
pattern of synchronization to manage dependencies.

169

#pragma omp ordered depend(sink : vec)
#pragma omp ordered depend(source)

• Depend clauses specify the order the threads execute
ordered regions.
– The sink dependence-type
– specifies a cross-iteration dependence, where the iteration vector vec

indicates the iteration that satisfies the dependence.
– The source dependence-type
– specifies the cross-iteration dependences that arise from the current

iteration.

vec is a comma
separated list of

decencies …
one per loop

involved in the
dependencies

Parallelizing DOACROSS Loops

#pragma omp for ordered(2) collapse(2)
for (r=1; r<N; r++) {

for (c=1; c<N; c++) {
// other parallel work ...
#pragma omp ordered depend(sink:r-1,c) \

depend(sink:r,c-1)
x[r][c] += fn(x[r-1][c], x[r][c-1]);

#pragma omp ordered depend(source)
}

}

170

x[r][c] is complete and
released for use by

other threads

Threads wait here until x[r-1][c]
and x[r][c-1] have been

released

2 loops contribute to the pattern
of dependencies … so the

dependency relations for each
depend(sink) is of length 2

171

OpenMP Memory Model
l OpenMP supports a shared memory model
l All threads share an address space, where variable can be stored or

retrieved:

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

l Threads maintain their own temporary view of memory as well … the
details of which are not defined in OpenMP but this temporary view
typically resides in caches, registers, write-buffers, etc.

a

a

. . .

172

Flush Operation
• Defines a sequence point at which a thread enforces a

consistent view of memory.

• For variables visible to other threads and associated with the
flush operation (the flush-set)
– The compiler can’t move loads/stores of the flush-set around a flush:
– All previous read/writes of the flush-set by this thread have completed
– No subsequent read/writes of the flush-set by this thread have occurred

– Variables in the flush set are moved from temporary storage to shared
memory.

– Reads of variables in the flush set following the flush are loaded from
shared memory.

IMPORTANT POINT: The flush makes the calling threads temporary view match the
view in shared memory. Flush by itself does not force synchronization.

173

Memory Consistency: Flush Example

l Flush forces data to be updated in memory so other threads see the most
recent value

double A;

A = compute();

#pragma omp flush(A)

// flush to memory to make sure other
// threads can pick up the right value

Note: OpenMP’s flush is analogous to a fence in other shared memory APIs

Flush without a list: flush set is all
thread visible variables

Flush with a list: flush set is the list of
variables

174

Flush and Synchronization

• A flush operation is implied by OpenMP synchronizations, e.g.,
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions
– whenever a lock is set or unset
….
(but not at entry to worksharing regions or entry/exit of master regions)

175

Example: prod_cons.c

int main()
{
double *A, sum, runtime; int flag = 0;

A = (double *) malloc(N*sizeof(double));

runtime = omp_get_wtime();

fill_rand(N, A); // Producer: fill an array of data

sum = Sum_array(N, A); // Consumer: sum the array

runtime = omp_get_wtime() - runtime;

printf(" In %lf secs, The sum is %lf \n",runtime,sum);
}

• Parallelize a producer/consumer program
– One thread produces values that another thread consumes.

– The key is to
implement
pairwise
synchronization
between threads

– Often used with a
stream of
produced values
to implement
“pipeline
parallelism”

176

Pairwise Synchronization in OpenMP

• OpenMP lacks synchronization constructs that work between
pairs of threads.

• When needed, you have to build it yourself.
• Pairwise synchronization

– Use a shared flag variable
– Reader spins waiting for the new flag value
– Use flushes to force updates to and from memory

177

Exercise: Producer/Consumer
int main()
{

double *A, sum, runtime; int numthreads, flag = 0;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{

fill_rand(N, A);

flag = 1;

}
#pragma omp section
{

while (flag == 0){

}

sum = Sum_array(N, A);
}

}
}

Put the flushes in the right places to
make this program race-free.

Do you need any other
synchronization constructs to make
this work?

178

Solution (try 1): Producer/Consumer
int main()
{

double *A, sum, runtime; int numthreads, flag = 0;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{

fill_rand(N, A);
#pragma omp flush
flag = 1;
#pragma omp flush (flag)

}
#pragma omp section
{

#pragma omp flush (flag)
while (flag == 0){

#pragma omp flush (flag)
}
#pragma omp flush
sum = Sum_array(N, A);

}
}

}

Use flag to Signal when the
“produced” value is ready

Flush forces refresh to memory;
guarantees that the other thread
sees the new value of A

Notice you must put the flush inside the
while loop to make sure the updated flag
variable is seen

Flush needed on both “reader” and “writer”
sides of the communication

This program works with the x86 memory model (loads and stores use relaxed
atomics), but it technically has a race … on the store and later load of flag

The OpenMP 3.1 Atomics (1 of 2)
• Atomic was expanded to cover the full range of common scenarios

where you need to protect a memory operation so it occurs atomically:
pragma omp atomic [read | write | update | capture]

179

• Atomic can protect loads
pragma omp atomic read

v = x;

• Atomic can protect stores
pragma omp atomic write

x = expr;

• Atomic can protect updates to a storage location (this is the default
behavior … i.e. when you don’t provide a clause)

pragma omp atomic update
x++; or ++x; or x--; or –x; or
x binop= expr; or x = x binop expr;

This is the
original OpenMP

atomic

The OpenMP 3.1 Atomics (2 of 2)
• Atomic can protect the assignment of a value (its capture) AND an

associated update operation:
pragma omp atomic capture

statement or structured block

180

• Where the statement is one of the following forms:
v = x++; v = ++x; v = x--; v = –x; v = x binop expr;

• Where the structured block is one of the following forms:

{v = x; x binop = expr;} {x binop = expr; v = x;}
{v=x; x=x binop expr;} {X = x binop expr; v = x;}
{v = x; x++;} {v=x; ++x:}
{++x; v=x:} {x++; v = x;}
{v = x; x--;} {v= x; --x;}
{--x; v = x;} {x--; v = x;}

The capture semantics in atomic were added to map onto common hardware
supported atomic operations and to support modern lock free algorithms

Atomics and Synchronization Flags

181

int main()
{ double *A, sum, runtime;

int numthreads, flag = 0, flg_tmp;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{ fill_rand(N, A);

#pragma omp flush
#pragma omp atomic write

flag = 1;
#pragma omp flush (flag)

}
#pragma omp section
{ while (1){

#pragma omp flush(flag)
#pragma omp atomic read

flg_tmp= flag;
if (flg_tmp==1) break;

}
#pragma omp flush
sum = Sum_array(N, A);

}
}

}

This program is truly race
free … the reads and
writes of flag are
protected so the two
threads cannot conflict

Still painful and error
prone due to all of the
flushes that are required

OpenMP 4.0 Atomic: Sequential Consistency

• Sequential consistency:
– The order of loads and stores in a race-free program appear in some

interleaved order and all threads in the team see this same order.
• OpenMP 4.0 added an optional clause to atomics

– #pragma omp atomic [read | write | update | capture] [seq_cst]
• In more pragmatic terms:

– If the seq_cst clause is included, OpenMP adds a flush without an
argument list to the atomic operation so you don’t need to.

• In terms of the C++’11 memory model:
– Use of the seq_cst clause makes atomics follow the sequentially

consistent memory order.
– Leaving off the seq_cst clause makes the atomics relaxed.

182

4.0

Advice to programmers: save yourself a world of hurt … let OpenMP take
care of your flushes for you whenever possible … use seq_cst

Atomics and Synchronization Flags (4.0)

183

int main()
{ double *A, sum, runtime;

int numthreads, flag = 0, flg_tmp;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{ fill_rand(N, A);

#pragma omp atomic write seq_cst
flag = 1;

}
#pragma omp section
{ while (1){

#pragma omp atomic read seq_cst
flg_tmp= flag;

if (flg_tmp==1) break;
}

sum = Sum_array(N, A);
}

}
}

This program is truly race
free … the reads and
writes of flag are protected
so the two threads cannot
conflict – and you do not
use any explicit flush
constructs (OpenMP does
them for you)

184

Synchronization: Lock Routines
• Simple Lock routines:
–A simple lock is available if it is unset.

–omp_init_lock(), omp_set_lock(),
omp_unset_lock(), omp_test_lock(), omp_destroy_lock()

• Nested Locks
–A nested lock is available if it is unset or if it is set but owned by

the thread executing the nested lock function
–omp_init_nest_lock(), omp_set_nest_lock(),

omp_unset_nest_lock(), omp_test_nest_lock(),
omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the lock,
so you don’t need to use a flush on the lock variable.

A lock implies a
memory fence (a
“flush”) of all thread
visible variables

Locks with hints were added in OpenMP 4.5 to suggest a lock strategy based on
intended use (e.g. contended, unconteded, speculative,, unspeculative)

185

Synchronization: Simple Locks
• Example: conflicts are rare, but to play it safe, we must assure mutual

exclusion for updates to histogram elements.

#pragma omp parallel for
for(i=0;i<NBUCKETS; i++){

omp_init_lock(&hist_locks[i]); hist[i] = 0;
}
#pragma omp parallel for
for(i=0;i<NVALS;i++){

ival = (int) sample(arr[i]);
omp_set_lock(&hist_locks[ival]);

hist[ival]++;
omp_unset_lock(&hist_locks[ival]);

}

for(i=0;i<NBUCKETS; i++)
omp_destroy_lock(&hist_locks[i]);

Free-up storage when done.

One lock per element of hist

Enforce mutual
exclusion on update
to hist array

186

Lock Example from Gafort (SpecOMP’2001)

• Genetic algorithm in Fortran
• Most “interesting” loop: shuffle the population.

– Original loop is not parallel; performs pair-wise swap of an array
element with another, randomly selected element. There are 40,000
elements.

– Parallelization idea:
– Perform the swaps in parallel
– Need to prevent simultaneous access to same array element: use one

lock per array element à 40,000 locks.

169

!$OMP PARALLEL PRIVATE(rand, iother, itemp, temp, my_cpu_id)
my_cpu_id = 1

!$ my_cpu_id = omp_get_thread_num() + 1
!$OMP DO

DO j=1,npopsiz-1
CALL ran3(1,rand,my_cpu_id,0)
iother=j+1+DINT(DBLE(npopsiz-j)*rand)

!$ IF (j < iother) THEN
!$ CALL omp_set_lock(lck(j))
!$ CALL omp_set_lock(lck(iother))
!$ ELSE
!$ CALL omp_set_lock(lck(iother))
!$ CALL omp_set_lock(lck(j))
!$ END IF

itemp(1:nchrome)=iparent(1:nchrome,iother)
iparent(1:nchrome,iother)=iparent(1:nchrome,j)
iparent(1:nchrome,j)=itemp(1:nchrome)
temp=fitness(iother)
fitness(iother)=fitness(j)
fitness(j)=temp

!$ IF (j < iother) THEN
!$ CALL omp_unset_lock(lck(iother))
!$ CALL omp_unset_lock(lck(j))
!$ ELSE
!$ CALL omp_unset_lock(lck(j))
!$ CALL omp_unset_lock(lck(iother))
!$ END IF

END DO
!$OMP END DO
!$OMP END PARALLEL

Parallel Loop
In shuffle.f
of Gafort

Exclusive access
to array
elements.
Ordered locking
prevents
deadlock.

Exercise

• We provide a program in the file hist.c
• This program tests our random number generator by calling

it many times and producing a histogram of the results.
• Parallelize this program.

188

189

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Thread Affinity and Data Locality
– Thread Private Data
– Synchronization: More than you ever wanted to know
– Programming your GPU with OpenMP

190

OpenMP basic definitions: Basic Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er

CPU cores SIMD units GPU cores

Shared address space (NUMA)

H
W

How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

191

extern void reduce(__local float*, __global float*);

__kernel void pi(const int niters, float step_size,
__local float* l_sums, __global float* p_sums)

{
int n_wrk_items = get_local_size(0);
int loc_id = get_local_id(0);
int grp_id = get_group_id(0);
float x, accum = 0.0f; int i,istart,iend;

istart = (grp_id * n_wrk_items + loc_id) * niters;
iend = istart+niters;

for(i= istart; i<iend; i++){
x = (i+0.5f)*step_size; accum += 4.0f/(1.0f+x*x); }

l_sums[local_id] = accum;
barrier(CLK_LOCAL_MEM_FENCE);
reduce(l_sums, p_sums);

}

1. Turn source code into a scalar
work-item

2. Map work-items onto
an an N dim index

space.

4. Run on hardware
designed around
the same SIMT

execution model

3. Map data structures
onto the same index

spaceThis is OpenCL kernel code … the sort
of code the OpenMP compiler generates

on your behalf

Third Party names are the property of their owners

How do we execute code on a GPU:
OpenCL and CUDA nomenclature

192

extern void reduce(__local float*, __global float*);

__kernel void pi(const int niters, float step_size,
__local float* l_sums, __global float* p_sums)

{
int n_wrk_items = get_local_size(0);
int loc_id = get_local_id(0);
int grp_id = get_group_id(0);
float x, accum = 0.0f; int i,istart,iend;

istart = (grp_id * n_wrk_items + loc_id) * niters;
iend = istart+niters;

for(i= istart; i<iend; i++){
x = (i+0.5f)*step_size; accum += 4.0f/(1.0f+x*x); }

l_sums[local_id] = accum;
barrier(CLK_LOCAL_MEM_FENCE);
reduce(l_sums, p_sums);

}

Turn source code into a scalar
work-item (a CUDA thread)

Organize work-items into
work-groups and map onto an an
N dim index space. Cuda calls a

work-group a thread-block

OpenCL index space is
called an NDRange.

CUDA calls this a GridThis code defines a kernel

Submit a
kernel to an
OpenCL
command
queue or a
CUDA stream

Third Party names are the property of their owners

It’s called SIMT, but GPUs are really vector-architectures with a block of work-
items executing together (a subgroup in OpenCL or a warp with Cuda)

A Generic Host/Device Platform Model

• One Host and one or more Devices
– Each Device is composed of one or more Compute Units
– Each Compute Unit is divided into one or more Processing

Elements
• Memory divided into host memory and device memory

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Third party names are the property of their owners.

§ Simply add a target construct

–Transfer control of execution to a SINGLE device thread
–Only one team of threads workshares the loop

Host thread

Device initial
thread

Device
thread
team

#pragma omp target
#pragma omp parallel for
for (i=0;i<N;i++)

…

Accelerated workshare v1.0

The target data environment

• Remember: distinct memory spaces on host and device.

• OpenMP uses a combination of implicit and explicit memory
movement.

• Data may move between the host and the device in well
defined places:
– Firstly, at the beginning and end of a target region:

#pragma omp target
{ // Data may move here

…
} // and here

– We’ll discuss the other places later…

195

Default Data Mapping:
implicit movement with a target region

• Scalar variables:
– Examples:
– int N; double x;

– OpenMP implicitly maps scalar variables as firstprivate
– A new value per work-item initialized with the original value (in OpenCL

nomenclature, the firstprivate goes in private memory).

– The variable is not copied back to the host at the end of the target
region.

– OpenMP target regions for GPUs execute with CUDA/OpenCL, and a
firstprivate scalar can be launched as a parameter to a kernel function
without the overhead of setting up a variable in device memory.

196

• Non-scalar variables:
– Must have a complete type.

– Example: fixed sized (stack) array:
– double A[1000];

– Copied to the device at the start of the target region, and copied back
at the end. In OpenCL nomenclature, these are placed in device global
memory.

– A new value is created in the target region and initialized with the
original data, but it is shared between threads on the device. Data is
copied back to the host at the end of the target region.

– OpenMP calls this mapping tofrom
197

Default Data Mapping:
implicit movement with a target region

• Pointers and their data:
– Example: arrays allocated on the heap
– double *A = malloc(sizeof(double)*1000);

– The pointer value will be mapped.

– But the data it points to will not be mapped by default.

198

Default Data Mapping:
implicit movement with a target region

The target data environment

Host thread
Generating Task

Initial task

Target task

#pragma omp target
{

target region,
can use A, B and N

}

Device Initial
thread

Host thread
waits for the

task region to
complete

float A[N], B[N]; A, B and N
mapped to the

device

the arrays
A and B

mapped back to
the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Scalars and statically allocated
arrays are moved onto the device

by default before execution

Only the statically allocated arrays
are moved back to the host after

the target region completes

199

Default Data Sharing: example
int main(void) {

int N = 1024;
double A[N], B[N];

#pragma omp target
{

for (int ii = 0; ii < N; ++ii) {

A[ii] = A[ii] + B[ii];

}

} // end of target region
}

1. Variables created in host
memory.

2. Scalar N and stack arrays
A and B are copied to device

memory. Execution
transferred to device.

3. ii is private on the device
as it’s declared within the

target region

4. Execution on the device.

5. stack arrays A and B are
copied from device memory

back to the host. Host
resumes execution.

200

Explicit Data Sharing

• Previously, we described the rules for implicit data movement.

• We explicitly control the movement of data using the map clause.

• Data allocated on the heap needs to explicitly copied to/from the device:

int main(void) {
int ii=0, N = 1024;
int* A = malloc(sizeof(int)*N);

#pragma omp target
{
// N, ii and A all exist here
// The data that A points to (*A , A[ii]) DOES NOT exist here!

}
}

Controlling data movement

• The various forms of the map clause
– map(to:list): On entering the region, variables in the list are initialized on the

device using the original values from the host (host to device copy).
– map(from:list): At the end of the target region, the values from variables in

the list are copied into the original variables (device to host copy). On
entering the region, initial value of the variable is not initialized.
– map(tofrom:list): the effect of both a map-to and a map-from (host to

device copy at start of region, device to host copy at end)
– map(alloc:list): On entering the region, data is allocated and uninitialized

on the device.
– map(list): equivalent to map(tofrom:list).

• For pointers you must use array section notation ..
– map(to:a[0:N]). Notation is A[lower-bound : length]

int i, a[N], b[N], c[N];
#pragma omp target map(to:a,b) map(tofrom:c)

Data movement
defined from the
host perspective.

Moving arrays with the map clause

int main(void) {
int N = 1024;
int* A = malloc(sizeof(int)*N);

#pragma omp target map(A[0:N])
{
// N, ii and A all exist here
// The data that A points to DOES exist here!

}
}

Default mapping
map(tofrom: A[0:N])

Copy at start and end of
target region.

teams and distribute constructs

• The teams construct
– Similar to the parallel construct
– It starts a league of thread teams
– Each team in the league starts as one initial thread – a team of one
– Threads in different teams cannot synchronize with each other
– The construct must be “perfectly” nested in a target construct

• The distribute construct
– Similar to the for construct
– Loop iterations are workshared across the initial threads in a league
– No implicit barrier at the end of the construct
– dist_schedule(kind[, chunk_size])
– If specified, scheduling kind must be static
– Chunks are distributed in round-robin fashion in chunks of size chunk_size
– If no chunk size specified, chunks are of (almost) equal size; each team

receives at least one chunk

Accelerated workshare v2.0

• teams construct
• distribute construct

• Transfer execution control to MULTIPLE device initial threads
• Workshare loop iterations across the initial threads.

host thread
device initial

threads

teams

#pragma omp target
#pragma omp teams
#pragma omp distribute
for (i=0;i<N;i++)

…

Accelerate workshare v3.0
• teams distribute
• parallel for simd

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the master thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

#pragma omp target
#pragma omp teams distribute
for (i=0;i<N;i++)
#pragma omp parallel for simd
for (j=0;j<M;i++)

…

Our host/device Platform Model and OpenMP

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Target
construct to
get onto a

device

Teams construct to create a
league of teams with one team of

threads on each compute unit.

Distribute construct to assign
blocks of loop iterations to teams.

Parallel for simd
to run each block
of loop iterations

on the processing
elements

Our host/device Platform Model and OpenMP

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Target
construct to
get onto a

device

Teams construct to create a
league of teams with one team of

threads on each compute unit.

Distribute construct to assign
blocks of loop iterations to teams.

Parallel for simd
to run each block
of loop iterations

on the processing
elements

Typical usage ... let the compiler do what’s best for the device:

#pragma omp target
to get on the device

#pragma omp teams distribute parallel for simd
to assign work to the device processing elements

Our running example: Jacobi solver

• An iterative method to solve a system of linear equations
– Given a matrix A and a vector b find the vector x such that Ax=b

• The basic algorithm:
– Write A as a lower triangular (L), upper triangular (U) and diagonal matrix

Ax = (L+D+U)x = b
– Carry out multiplications and rearrange

Dx=b-(L+U)x à x = (b-(L+U)x)/D
– Iteratively compute a new x using the x from the previous iteration

Xnew = (b-(L+U)xold)/D

• Advantage: we can easily test if the answer is correct by
multiplying our final x by A and comparing to b

• Disadvantage: It takes many iterations and only works for
diagonally dominant matrices

Jacobi Solver

<<< allocate and initialize the matrix A >>>
<<< and vectors x1, x2 and b >>>

while((conv > TOL) && (iters<MAX_ITERS))
{
iters++;

for (i=0; i<Ndim; i++){
xnew[i] = (TYPE) 0.0;
for (j=0; j<Ndim;j++){

if(i!=j)
xnew[i]+= A[i*Ndim + j]*xold[j];

}
xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}

// test convergence
conv = 0.0;
for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];
conv += tmp*tmp;

}
conv = sqrt((double)conv);

// swap pointers for next
// iteration
TYPE* tmp = xold;
xold = xnew;
xnew = tmp;

} // end while loop

Iteratively update xnew until the value stabilizes (i.e. change less than a preset TOL)

Jacobi Solver (Par Targ, 1/2)
while((conv > TOL) && (iters<MAX_ITERS))
{
iters++;

#pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
map(to:A[0:Ndim*Ndim], b[0:Ndim])

#pragma omp teams distribute parallel for simd private(i,j)
for (i=0; i<Ndim; i++){

xnew[i] = (TYPE) 0.0;
for (j=0; j<Ndim;j++){

if(i!=j)
xnew[i]+= A[i*Ndim + j]*xold[j];

}
xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}

Jacobi Solver (Par Targ, 2/2)
//
// test convergence
//
conv = 0.0;

#pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
map(tofrom:conv)

#pragma omp teams distribute parallel for simd \
private(i,tmp) reduction(+:conv)

for (i=0; i<Ndim; i++){
tmp = xnew[i]-xold[i];
conv += tmp*tmp;

}
conv = sqrt((double)conv);

TYPE* tmp = xold;
xold = xnew;
xnew = tmp;

} // end while loop

This worked but the performance was
awful. Why?

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per
loop

131.94 secs

Cray® XC40™ Supercomputer running Cray® Compiling Environment 8.5.3.
Intel® Xeon ® CPU E5-2697 v2 @ 2.70GHz with 32 GB DDR3. NVIDIA® Tesla® K20X, 6GB.

Data movement dominates!!!
while((conv > TOLERANCE) && (iters<MAX_ITERS))

{ iters++;
xnew = iters % s ? x2 : x1;
xold = iters % s ? x1 : x2;

#pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
map(to:A[0:Ndim*Ndim], b[0:Ndim])

#pragma omp teams distribute parallel for simd private(i,j)
for (i=0; i<Ndim; i++){

xnew[i] = (TYPE) 0.0;
for (j=0; j<Ndim;j++){

if(i!=j)
xnew[i]+= A[i*Ndim + j]*xold[j];

}
xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}
// test convergence

conv = 0.0;
#pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \

map(tofrom:conv)
#pragma omp teams distribute parallel for private(i,tmp) reduction(+:conv)
for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];
conv += tmp*tmp;

}
conv = sqrt((double)conv);

}

Typically over 4000 iterations!

For each iteration, copy to device
(3*Ndim+Ndim2)*sizeof(TYPE) bytes

For each iteration, copy from device
2*Ndim*sizeof(TYPE) bytes

For each iteration, copy to
device
2*Ndim*sizeof(TYPE) bytes

Target data directive
• The target data construct creates a target data region

… use map clauses for explicit data management

one or more target
regions work within the

target data region

#pragma omp target data map(to:A, B) map(from: C)
{

#pragma omp target
{do lots of stuff with A, B and C}

{do something on the host}

#pragma omp target
{do lots of stuff with A, B, and C}

}

Data is mapped onto the
device at the beginning of

the construct

Data is mapped back to
the host at the end of the

target data region

Jacobi Solver (Par Targ Data, 1/2)
#pragma omp target data map(tofrom:x1[0:Ndim],x2[0:Ndim]) \

map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
while((conv > TOL) && (iters<MAX_ITERS))

{ iters++;

#pragma omp target
#pragma omp teams distribute parallel for simd private(j) firstprivate(xnew,xold)

for (i=0; i<Ndim; i++){
xnew[i] = (TYPE) 0.0;
for (j=0; j<Ndim;j++){

if(i!=j)
xnew[i]+= A[i*Ndim + j]*xold[j];

}
xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}

Jacobi Solver (Par Targ Data, 2/2)
// test convergence
conv = 0.0;
#pragma omp target map(tofrom: conv)
#pragma omp teams distribute parallel for simd \

private(tmp) firstprivate(xnew,xold) reduction(+:conv)
for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];
conv += tmp*tmp;

}
// end target region
conv = sqrt((double)conv);

TYPE* tmp = xold;
xold = xnew;
xnew = tmp;

} // end while loop

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per loop 131.94 secs
Above plus target
data region

18.37 secs

Third party names are the property of their owners.

Single Instruction Multiple Data

• Individual work-items of a warp start together at the same
program address

• Each work-item has its own instruction address counter
and register state
– Each work-item is free to branch and execute independently
– Supports the SPMD pattern.

• Branch behavior
– Each branch will be executed serially
– Work-items not following the current branch will be disabled

217

A warp

Start Branch1 Branch2 Branch3 Converge

Time

Branching

Conditional execution
// Only evaluate expression
// if condition is met
if (a > b)
{
acc += (a - b*c);

}

Selection and masking
// Always evaluate expression
// and mask result
temp = (a - b*c);
mask = (a > b ? 1.f : 0.f);
acc += (mask * temp);

Coalescence
• Coalesce - to

combine into one
• Coalesced memory

accesses are key for
high bandwidth

• Simply, it means, if
thread i accesses
memory location n
then thread i+1
accesses memory
location n+1

• In practice, it’s not
quite as strict…

for (int id = 0; id < size; id++)
{
// ideal

float val1 = memA[id];

// still pretty good
const int c = 3;
float val2 = memA[id + c];

// stride size is not so good
float val3 = memA[c*id];

// terrible
const int loc =
some_strange_func(id);

float val4 = memA[loc];
}

Jacobi Solver (Targ Data/branchless/coalesced mem, 1/2)

#pragma omp target data map(tofrom:x1[0:Ndim],x2[0:Ndim]) \
map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)

while((conv > TOL) && (iters<MAX_ITERS))
{ iters++;

#pragma omp target
#pragma omp teams distribute parallel for simd private(j)

for (i=0; i<Ndim; i++){
xnew[i] = (TYPE) 0.0;
for (j=0; j<Ndim;j++){

xnew[i]+= (A[j*Ndim + i]*xold[j])*((TYPE)(i != j));
}
xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}

We replaced the original code with a
poor memory access pattern

xnew[i]+= (A[i*Ndim + j]*xold[j])
With the more efficient

xnew[i]+= (A[j*Ndim + i]*xold[j])

//
// test convergence
conv = 0.0;

#pragma omp target map(tofrom: conv)
#pragma omp teams distribute parallel for simd \

private(tmp) reduction(+:conv)
for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];
conv += tmp*tmp;

}
conv = sqrt((double)conv);

TYPE* tmp = xold;
xold = xnew;
xnew = tmp;

} // end while loop

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per
loop

131.94 secs

Above plus
target data
region

18.37 secs

Above plus
reduced
branching

13.74 secs

Above plus
improved mem
access

7.64 secs

Jacobi Solver (Targ Data/branchless/coalesced mem, 2/2)

Cray® XC40™ Supercomputer running Cray® Compiling Environment 8.5.3.
Intel® Xeon ® CPU E5-2697 v2 @ 2.70GHz with 32 GB DDR3. NVIDIA® Tesla® K20X, 6GB. Third party names are the property of their owners.

222

Appendices
• Challenge Problems
• Challenge Problems: solutions

– Monte Carlo PI and random number generators
– Molecular dynamics
– Matrix multiplication
– Recursive matrix multiplication

• Mixing OpenMP and MPI
• Fortran and OpenMP
• Details on the cache oblivious LU example

Challenge problems

• Long term retention of acquired skills is best supported by
“random practice”.
– i.e., a set of exercises where you must draw on multiple facets of the

skills you are learning.
• To support “Random Practice” we have assembled a set of

“challenge problems”
1. Parallel random number generators
2. Parallel molecular dynamics
3. Optimizing matrix multiplication
4. Recursive matrix multiplication algorithms

223

224

Challenge 1: Parallel Random number generators

• Go back to the monte Carlo pi program we discussed earlier
when we covered threadprivate data.

• Make the parallel random number generators correct when
used in parallel

225

Challenge 2: Molecular dynamics

• The code supplied is a simple molecular dynamics
simulation of the melting of solid argon

• Computation is dominated by the calculation of force pairs in
subroutine forces (in forces.c)

• Parallelise this routine using a parallel for construct and
atomics; think carefully about which variables should be
SHARED, PRIVATE or REDUCTION variables

• Experiment with different schedule kinds

226

Challenge 2: MD (cont.)

• Once you have a working version, move the parallel region
out to encompass the iteration loop in main.c
– Code other than the forces loop must be executed by a single thread

(or workshared).
– How does the data sharing change?

• The atomics are a bottleneck on most systems.
– This can be avoided by introducing a temporary array for the force

accumulation, with an extra dimension indexed by thread number
– Which thread(s) should do the final accumulation into f?

227

Challenge 2 MD: (cont.)

• Another option is to use locks
– Declare an array of locks
– Associate each lock with some subset of the particles
– Any thread that updates the force on a particle must hold the

corresponding lock
– Try to avoid unnecessary acquires/releases
– What is the best number of particles per lock?

228

Challenge 3: Matrix multiplication

• Parallelize the matrix multiplication program in the file
mm_testbed.c

• Can you optimize the program by playing with how the loops
are scheduled?

• Try the following and see how they interact with the
constructs in OpenMP
– Alignment
– Cache blocking
– Loop unrolling
– Vectorization

• Goal: Can you approach the peak performance of the
computer?

229

Challenge 4: Recursive matrix multiplication

• The following three slides explain how to use a recursive
algorithm to multiply a pair of matrices

• Source code implementing this algorithm is provided in the
file matmul_recur.c

• Parallelize this program using OpenMP tasks

Challenge 4: Recursive matrix multiplication

• Quarter each input matrix and output matrix
• Treat each submatrix as a single element and multiply
• 8 submatrix multiplications, 4 additions

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C1,1 = A1,1·B1,1 + A1,2·B2,1
C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2
C2,2 = A2,1·B1,2 + A2,2·B2,2

230

Challenge 4: Recursive matrix multiplication
How to multiply submatrices?

• Use the same routine that is computing the full matrix
multiplication
– Quarter each input submatrix and output submatrix
– Treat each sub-submatrix as a single element and multiply

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C111,1 = A111,1·B111,1 + A111,2·B112,1 +
A121,1·B211,1 + A121,2·B212,1

C1,1 = A1,1·B1,1 + A1,2·B2,1

231

A1,1

A111,1 A111,2

A112,1 A112,2

B1,1

B111,1 B111,2

B112,1 B112,2

C1,1

C111,1 C111,2

C112,1 C112,2

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

Challenge 4: Recursive matrix multiplication
Recursively multiply submatrices

• Also need stopping criteria for recursion
232

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,

double **A, double **B, double **C)

{// Dimensions: A[mf..ml][pf..pl] B[pf..pl][nf..nl] C[mf..ml][nf..nl]

// C11 += A11*B11

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A,B,C);

// C11 += A12*B21

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A,B,C);

. . .

}

l Need range of indices to define each submatrix to be used

233

Appendices
• Challenge Problems
• Challenge Problems: solutions

– Monte Carlo PI and random number generators
– Molecular dynamics
– Matrix multiplication
– Recursive matrix multiplication

• Mixing OpenMP and MPI
• Fortran and OpenMP
• Details on the cache oblivious LU example

234

Computers and random numbers
• We use “dice” to make random numbers:

– Given previous values, you cannot predict the next value.
– There are no patterns in the series … and it goes on forever.

• Computers are deterministic machines … set an initial state,
run a sequence of predefined instructions, and you get a
deterministic answer
– By design, computers are not random and cannot produce random

numbers.
• However, with some very clever programming, we can make

“pseudo random” numbers that are as random as you need
them to be … but only if you are very careful.

• Why do I care? Random numbers drive statistical methods
used in countless applications:
– Sample a large space of alternatives to find statistically good answers

(Monte Carlo methods).

235

Monte Carlo Calculations
Using Random numbers to solve tough problems

• Sample a problem domain to estimate areas, compute probabilities,
find optimal values, etc.

• Example: Computing π with a digital dart board:

l Throw darts at the circle/square.
l Chance of falling in circle is

proportional to ratio of areas:
Ac = r2 * π
As = (2*r) * (2*r) = 4 * r2

P = Ac/As = π /4
l Compute π by randomly

choosing points, count the
fraction that falls in the circle,
compute pi.

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148

236

Parallel Programmers love Monte Carlo
algorithms

#include “omp.h”
static long num_trials = 10000;
int main ()
{

long i; long Ncirc = 0; double pi, x, y;
double r = 1.0; // radius of circle. Side of squrare is 2*r
seed(0,-r, r); // The circle and square are centered at the origin
#pragma omp parallel for private (x, y) reduction (+:Ncirc)
for(i=0;i<num_trials; i++)
{

x = random(); y = random();
if (x*x + y*y) <= r*r) Ncirc++;

}

pi = 4.0 * ((double)Ncirc/(double)num_trials);
printf("\n %d trials, pi is %f \n",num_trials, pi);

}

Embarrassingly parallel: the
parallelism is so easy its
embarrassing.

Add two lines and you have a
parallel program.

237

Linear Congruential Generator (LCG)
• LCG: Easy to write, cheap to compute, portable, OK quality

l If you pick the multiplier and addend correctly, LCG has a period of
PMOD.

l Picking good LCG parameters is complicated, so look it up
(Numerical Recipes is a good source). I used the following:
u MULTIPLIER = 1366
u ADDEND = 150889
u PMOD = 714025

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

238

LCG code

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
double random ()
{

long random_next;

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);
}

Seed the pseudo random
sequence by setting
random_last

239

Running the PI_MC program with LCG generator

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

LCG - one thread

LCG, 4 threads,
trail 1
LCG 4 threads,
trial 2
LCG, 4 threads,
trial 3

Log 10 R
elative error

Log10 number of samples

Run the same
program the
same way and
get different
answers!

That is not
acceptable!

Issue: my LCG
generator is not
threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core laptop (Intel
T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP.

240

LCG code: threadsafe version

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
#pragma omp threadprivate(random_last)
double random ()
{

long random_next;

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);
}

random_last carries state
between random number
computations,

To make the generator
threadsafe, make
random_last threadprivate
so each thread has its
own copy.

241

Thread safe random number generators

Log
10 R

elative error

Log10 number of samples Thread safe
version gives the
same answer each
time you run the
program.

But for large
number of
samples, its
quality is lower
than the one
thread result!

Why?
0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6 LCG - one

thread
LCG 4 threads,
trial 1
LCT 4 threads,
trial 2
LCG 4 threads,
trial 3
LCG 4 threads,
thread safe

242

Pseudo Random Sequences
• Random number Generators (RNGs) define a sequence of pseudo-random

numbers of length equal to the period of the RNG

l In a typical problem, you grab a subsequence of the RNG range

Seed determines starting point

l Grab arbitrary seeds and you may generate overlapping sequences
u E.g. three sequences … last one wraps at the end of the RNG period.

l Overlapping sequences = over-sampling and bad statistics … lower quality or
even wrong answers!

Thread 1
Thread 2

Thread 3

243

Parallel random number generators
• Multiple threads cooperate to generate and use random

numbers.
• Solutions:

– Replicate and Pray
– Give each thread a separate, independent generator
– Have one thread generate all the numbers.
– Leapfrog … deal out sequence values “round robin”

as if dealing a deck of cards.
– Block method … pick your seed so each threads gets

a distinct contiguous block.
• Other than “replicate and pray”, these are difficult to

implement. Be smart … get a math library that does it
right.

If done right, can
generate the
same sequence
regardless of the
number of
threads …

Nice for
debugging, but
not really needed
scientifically.Intel’s Math kernel Library supports a wide range of

parallel random number generators.

For an open alternative, the state of the art is the Scalable Parallel
Random Number Generators Library (SPRNG): http://www.sprng.org/

from Michael Mascagni’s group at Florida State University.

http://www.sprng.org/

244

MKL Random number generators (RNG)

#define BLOCK 100
double buff[BLOCK];
VSLStreamStatePtr stream;

vslNewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val);

vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream,
BLOCK, buff, low, hi)

vslDeleteStream(&stream);

l MKL includes several families of RNGs in its vector statistics library.
l Specialized to efficiently generate vectors of random numbers

Initialize a
stream or
pseudo
random
numbers

Select type of RNG
and set seed

Fill buff with BLOCK pseudo rand.
nums, uniformly distributed with values
between lo and hi.

Delete the stream when you are done

245

Wichmann-Hill generators (WH)

• WH is a family of 273 parameter sets each defining a non-
overlapping and independent RNG.

• Easy to use, just make each stream threadprivate and initiate RNG
stream so each thread gets a unique WG RNG.

VSLStreamStatePtr stream;

#pragma omp threadprivate(stream)

…

vslNewStream(&ran_stream, VSL_BRNG_WH+Thrd_ID, (int)seed);

246

Independent Generator for each thread

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

WH one
thread
WH, 2
threads
WH, 4
threads

Log
10 R

elative error

Log10 number of samples
Notice that once
you get beyond
the high error,
small sample
count range,
adding threads
doesn’t
decrease quality
of random
sampling.

247

#pragma omp single
{ nthreads = omp_get_num_threads();

iseed = PMOD/MULTIPLIER; // just pick a seed
pseed[0] = iseed;
mult_n = MULTIPLIER;
for (i = 1; i < nthreads; ++i)
{

iseed = (unsigned long long)((MULTIPLIER * iseed) % PMOD);
pseed[i] = iseed;
mult_n = (mult_n * MULTIPLIER) % PMOD;

}

}
random_last = (unsigned long long) pseed[id];

Leap Frog method
• Interleave samples in the sequence of pseudo random numbers:

– Thread i starts at the ith number in the sequence
– Stride through sequence, stride length = number of threads.

• Result … the same sequence of values regardless of the number of
threads.

One thread
computes offsets
and strided
multiplier

LCG with Addend = 0 just
to keep things simple

Each thread stores offset starting
point into its threadprivate “last
random” value

248

Same sequence with many threads.
• We can use the leapfrog method to generate the same

answer for any number of threads

Steps One thread 2 threads 4 threads

1000 3.156 3.156 3.156

10000 3.1168 3.1168 3.1168

100000 3.13964 3.13964 3.13964

1000000 3.140348 3.140348 3.140348

10000000 3.141658 3.141658 3.141658

Used the MKL library with two generator streams per computation: one for the x values (WH) and one for the
y values (WH+1). Also used the leapfrog method to deal out iterations among threads.

249

Appendices
• Challenge Problems
• Challenge Problems: solutions

– Monte Carlo PI and random number generators
– Molecular dynamics
– Matrix multiplication
– Recursive matrix multiplication

• Mixing OpenMP and MPI
• Fortran and OpenMP
• Details on the cache oblivious LU example

Molecular dynamics: Solution

#pragma omp parallel for default (none) \
shared(x,f,npart,rcoff,side) \
reduction(+:epot,vir) \
schedule (static,32)
for (int i=0; i<npart*3; i+=3) {
……… Loop is not well load

balanced: best
schedule has to be
found by experiment.

Compiler will warn you
if you have missed
some variables

........
#pragma omp atomic

f[j] -= forcex;
#pragma omp atomic

f[j+1] -= forcey;
#pragma omp atomic

f[j+2] -= forcez;
}

}
#pragma omp atomic

f[i] += fxi;
#pragma omp atomic

f[i+1] += fyi;
#pragma omp atomic

f[i+2] += fzi;
}

}

All updates to f must be
atomic

Molecular dynamics : Solution (cont.)

Molecular dynamics : With orphaning

#pragma omp single
{

vir = 0.0;
epot = 0.0;

}
#pragma omp for reduction(+:epot,vir) schedule (static,32)

for (int i=0; i<npart*3; i+=3) {
………

All variables which used to
be shared here are now
implicitly determined

Implicit barrier needed to avoid race
condition with update of reduction variables
at end of the for construct

Molecular dynamics : With array reduction

ftemp[myid][j] -= forcex;
ftemp[myid][j+1] -= forcey;
ftemp[myid][j+2] -= forcez;

}
}
ftemp[myid][i] += fxi;
ftemp[myid][i+1] += fyi;
ftemp[myid][i+2] += fzi;

}

Replace atomics with
accumulation into array
with extra dimension

Molecular dynamics : With array reduction

….
#pragma omp for

for(int i=0;i<(npart*3);i++){
for(int id=0;id<nthreads;id++){

f[i] += ftemp[id][i];
ftemp[id][i] = 0.0;

}
}

Reduction can be done
in parallel

Zero ftemp for next time
round

255

Appendices
• Challenge Problems
• Challenge Problems: solutions

– Monte Carlo PI and random number generators
– Molecular dynamics
– Matrix multiplication
– Recursive matrix multiplication

• Mixing OpenMP and MPI
• Fortran and OpenMP
• Details on the cache oblivious LU example

256

Challenge: Matrix Multiplication

• Parallelize the matrix multiplication program in the file
matmul.c

• Can you optimize the program by playing with how the loops
are scheduled?

• Try the following and see how they interact with the
constructs in OpenMP
– Cache blocking
– Loop unrolling
– Vectorization

• Goal: Can you approach the peak performance of the
computer?

257

Matrix multiplication

#pragma omp parallel for private(tmp, i, j, k)
for (i=0; i<Ndim; i++){

for (j=0; j<Mdim; j++){
tmp = 0.0;
for(k=0;k<Pdim;k++){

/* C(i,j) = sum(over k) A(i,k) * B(k,j) */
tmp += *(A+(i*Ndim+k)) * *(B+(k*Pdim+j));

}
*(C+(i*Ndim+j)) = tmp;

}
}

•On a dual core laptop

•13.2 seconds 153 Mflops one thread

•7.5 seconds 270 Mflops two threads

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

There is much more that can be
done. This is really just the first
and most simple step

258

Appendices
• Challenge Problems
• Challenge Problems: solutions

– Monte Carlo PI and random number generators
– Molecular dynamics
– Matrix multiplication
– Recursive matrix multiplication

• Mixing OpenMP and MPI
• Fortran and OpenMP
• Details on the cache oblivious LU example

#define THRESHOLD 32768 // product size below which simple matmult code is called

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,
double **A, double **B, double **C)

// Dimensions: A[mf..ml][pf..pl] B[pf..pl][nf..nl] C[mf..ml][nf..nl]

{
if ((ml-mf)*(nl-nf)*(pl-pf) < THRESHOLD)

matmult (mf, ml, nf, nl, pf, pl, A, B, C);
else
{

#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C); // C11 += A11*B11
matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C); // C11 += A12*B21

}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{

matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C); // C12 += A11*B12
matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C); // C12 += A12*B22

}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{

matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C); // C21 += A21*B11
matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C); // C21 += A22*B21

}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{

matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C); // C22 += A21*B12
matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C); // C22 += A22*B22

}
#pragma omp taskwait

}
}

Recursive matrix multiplication

259

• Could be executed in parallel as 4 tasks
– Each task executes the two calls for the same output submatrix of C

• However, the same number of multiplication operations needed

260

Appendices
• Challenge Problems
• Challenge Problems: solutions

– Monte Carlo PI and random number generators
– Molecular dynamics
– Matrix multiplication
– Linked lists
– Recursive matrix multiplication

• Mixing OpenMP and MPI
• Fortran and OpenMP
• Details on the cache oblivious LU example

261

How do people mix MPI and OpenMP?

Replicate the program.

Add glue code

Break up the data

A sequential program
working on a data set

•Create the MPI program
with its data
decomposition.

• Use OpenMP inside each
MPI process.

262

Pi program with MPI and OpenMP
#include <mpi.h>
#include “omp.h”
void main (int argc, char *argv[])
{

int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;
step = 1.0/(double) num_steps ;
MPI_Init(&argc, &argv) ;
MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
my_steps = num_steps/numprocs ;

#pragma omp parallel for reduction(+:sum) private(x)
for (i=my_id*my_steps; i<(m_id+1)*my_steps ; i++)
{

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
sum *= step ;
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD) ;
}

Get the MPI
part done
first, then add
OpenMP
pragma
where it
makes sense
to do so

263

Key issues when mixing OpenMP and MPI
1. Messages are sent to a process not to a particular thread.

– Not all MPIs are threadsafe. MPI 2.0 defines threading modes:
– MPI_Thread_Single: no support for multiple threads
– MPI_Thread_Funneled: Mult threads, only master calls MPI
– MPI_Thread_Serialized: Mult threads each calling MPI, but they

do it one at a time.
– MPI_Thread_Multiple: Multiple threads without any restrictions

– Request and test thread modes with the function:
MPI_init_thread(desired_mode, delivered_mode, ierr)

2. Environment variables are not propagated by mpirun. You’ll
need to broadcast OpenMP parameters and set them with
the library routines.

264

Dangerous Mixing of MPI and OpenMP
• The following will work only if MPI_Thread_Multiple is supported … a

level of support I wouldn’t depend on.
MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;
#pragma omp parallel
{

int tag, swap_neigh, stat, omp_id = omp_thread_num();
long buffer [BUFF_SIZE], incoming [BUFF_SIZE];
big_ugly_calc1(omp_id, mpi_id, buffer);

// Finds MPI id and tag so
neighbor(omp_id, mpi_id, &swap_neigh, &tag); // messages don’t conflict

MPI_Send (buffer, BUFF_SIZE, MPI_LONG, swap_neigh,
tag, MPI_COMM_WORLD);

MPI_Recv (incoming, buffer_count, MPI_LONG, swap_neigh,
tag, MPI_COMM_WORLD, &stat);

big_ugly_calc2(omp_id, mpi_id, incoming, buffer);
#pragma critical

consume(buffer, omp_id, mpi_id);
}

265

Messages and threads
• Keep message passing and threaded sections of your

program separate:
– Setup message passing outside OpenMP parallel regions

(MPI_Thread_funneled)
– Surround with appropriate directives (e.g. critical section or master)

(MPI_Thread_Serialized)
– For certain applications depending on how it is designed it may not

matter which thread handles a message. (MPI_Thread_Multiple)
– Beware of race conditions though if two threads are probing on the same

message and then racing to receive it.

266

Safe Mixing of MPI and OpenMP
Put MPI in sequential regions

MPI_Init(&argc, &argv) ; MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;

// a whole bunch of initializations

#pragma omp parallel for
for (I=0;I<N;I++) {

U[I] = big_calc(I);
}

MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, swap_neigh,
tag, MPI_COMM_WORLD);

MPI_Recv (incoming, buffer_count, MPI_DOUBLE, swap_neigh,
tag, MPI_COMM_WORLD, &stat);

#pragma omp parallel for
for (I=0;I<N;I++) {

U[I] = other_big_calc(I, incoming);
}

consume(U, mpi_id);

Technically Requires
MPI_Thread_funneled, but I
have never had a problem with
this approach … even with pre-
MPI-2.0 libraries.

267

Safe Mixing of MPI and OpenMP
Protect MPI calls inside a parallel region

MPI_Init(&argc, &argv) ; MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;

// a whole bunch of initializations

#pragma omp parallel
{
#pragma omp for

for (I=0;I<N;I++) U[I] = big_calc(I);

#pragma master
{

MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD);
MPI_Recv (incoming, count, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD,

&stat);
}
#pragma omp barrier
#pragma omp for

for (I=0;I<N;I++) U[I] = other_big_calc(I, incoming);

#pragma omp master
consume(U, mpi_id);

}

Technically Requires
MPI_Thread_funneled, but I
have never had a problem with
this approach … even with pre-
MPI-2.0 libraries.

268

Hybrid OpenMP/MPI works, but is it worth it?

• Literature* is mixed on the hybrid model: sometimes its better, sometimes
MPI alone is best.

• There is potential for benefit to the hybrid model
– MPI algorithms often require replicated data making them less memory

efficient.
– Fewer total MPI communicating agents means fewer messages and less

overhead from message conflicts.
– Algorithms with good cache efficiency should benefit from shared caches of

multi-threaded programs.
– The model maps perfectly with clusters of SMP nodes.

• But really, it’s a case by case basis and to large extent depends on the
particular application.

*L. Adhianto and Chapman, 2007

269

Appendices
• Challenge Problems
• Challenge Problems: solutions

– Monte Carlo PI and random number generators
– Molecular dynamics
– Matrix multiplication
– Linked lists
– Recursive matrix multiplication

• Mixing OpenMP and MPI
• Fortran and OpenMP
• Details on the cache oblivious LU example

Fortran and OpenMP

• We were careful to design the OpenMP constructs so they
cleanly map onto C, C++ and Fortran.

• There are a few syntactic differences that once understood,
will allow you to move back and forth between languages.

• In the specification, language specific notes are included
when each construct is defined.

270

OpenMP:
Some syntax details for Fortran programmers

• Most of the constructs in OpenMP are compiler directives.
– For Fortran, the directives take one of the forms:

C$OMP construct [clause [clause]…]
!$OMP construct [clause [clause]…]
*$OMP construct [clause [clause]…]

• The OpenMP include file and lib module
use omp_lib
Include omp_lib.h

OpenMP:
Structured blocks (Fortran)

C$OMP PARALLEL
10 wrk(id) = garbage(id)

res(id) = wrk(id)**2
if(conv(res(id)) goto 10

C$OMP END PARALLEL
print *,id

–Most OpenMP constructs apply to structured blocks.
–Structured block: a block of code with one point of

entry at the top and one point of exit at the bottom.
–The only “branches” allowed are STOP statements

in Fortran and exit() in C/C++.

C$OMP PARALLEL
10 wrk(id) = garbage(id)
30 res(id)=wrk(id)**2

if(conv(res(id))goto 20
go to 10

C$OMP END PARALLEL
if(not_DONE) goto 30

20 print *, id

A structured block Not A structured block

OpenMP:
Structured Block Boundaries

l In Fortran: a block is a single statement or a group of statements between
directive/end-directive pairs.

C$OMP PARALLEL
10 wrk(id) = garbage(id)

res(id) = wrk(id)**2
if(conv(res(id)) goto 10

C$OMP END PARALLEL

C$OMP PARALLEL DO
do I=1,N

res(I)=bigComp(I)
end do

C$OMP END PARALLEL DO

l The “construct/end construct” pairs is done anywhere a structured block
appears in Fortran. Some examples:
l DO … END DO
l PARALLEL … END PARALLEL
l CRICITAL … END CRITICAL
l SECTION … END SECTION

l SECTIONS … END SECTIONS
l SINGLE … END SINGLE
l MASTER … END MASTER

Runtime library routines
• The include file or module defines parameters

– Integer parameter omp_lock_kind
– Integer parameter omp_nest_lock_kind
– Integer parameter omp_sched_kind
– Integer parameter openmp_version

– With value that matches C’s _OPEMMP macro
• Fortran interfaces are similar to those used with C

– Subroutine omp_set_num_threads (num_threads)
– Integer function omp_get_num_threads()
– Integer function omp_get_thread_num()\
– Subroutine omp_init_lock(svar)

– Integer(kind=omp_lock_kind) svar
– Subroutine omp_destroy_lock(svar)
– Subroutine omp_set_lock(svar)
– Subroutine omp_unset_lock(svar)

274

275

Appendices
• Challenge Problems
• Challenge Problems: solutions

– Monte Carlo PI and random number generators
– Molecular dynamics
– Matrix multiplication
– Linked lists
– Recursive matrix multiplication

• Mixing OpenMP and MPI
• Fortran and OpenMP
• Details on the cache oblivious LU example

LU Decomposition
Recursive Cache Oblivious Algorithm

276

• This approach forces the amount of work per task and the
blocking size for the targeted cache to be the same.

• This becomes an issue on larger matrix sizes, and on
architectures with smaller caches. Either the number of
tasks gets very large and increases overhead, or the tasks
don’t take advantage of Cache.

• A cache oblivious algorithm provides a way to control the
number of tasks while still optimizing for one or more levels
of cache within each task.

LU Decomposition
Recursive Cache Oblivious Algorithm

277

B0,2 B0,3

B1,2 B1,3

B0,0 B0,1

B1,0 B1,1

B2,2 B2,3

B3,2 B3,3

B2,0 B2,1

B3,0 B3,1

• To start with an
example, take a matrix
divided into 4x4 blocks

LU Decomposition
Recursive Cache Oblivious Algorithm

278

Row Row

Inner Inner

Diag Row

Col Inner

Inner Inner

Inner Inner

Col Inner

Col Inner

• The first version would
go through the first
iteration and create
tasks for these blocks,
then move on to the next
iteration.

LU Decomposition
Recursive Cache Oblivious Algorithm

279

Row

Col

Diag

Inner

• The recursive version
starts by calling Diag to
divide the whole matrix
into quadrants.

• Each of these quadrants
is processed, and then
Diag is called again on
the output of Inner,
which handles the
second half of iterations.

LU Decomposition
Recursive Cache Oblivious Algorithm

280

Diag Row

Col Inner

Row

Col Inner

• Within diag, the blocks
are processed as shown.

LU Decomposition
Recursive Cache Oblivious Algorithm

281

Diag Row

Col Diag

Row

Col Inner

• Then, like mentioned
earlier, diag is called
again to handle the next
iteration.

LU Decomposition
Recursive Cache Oblivious Algorithm

282

Diag Row

Col Diag

Col Inner

• Similarly, row and inner
are called for the first
iteration.

Row Row

Inner Inner

LU Decomposition
Recursive Cache Oblivious Algorithm

283

Diag Row

Col Diag

Col Inner

• Then row is called again
for the second iteration. Row Row

Row Row

LU Decomposition
Recursive Cache Oblivious Algorithm

284

Diag Row

Col Diag

Inner

• Once the row quadrant
is finished, the col
quadrant is similarly
processed.

Row Row

Row Row

Col Inner

Col Inner

LU Decomposition
Recursive Cache Oblivious Algorithm

285

Diag Row

Col Diag

Inner

• And again, col is
processed for the
second iteration.

Row Row

Row Row

Col Col

Col Col

LU Decomposition
Recursive Cache Oblivious Algorithm

286

Diag Row

Col Diag

• Each of the blocks in
inner is processed using
row and column 0 for the
first iteration. Then
processed again using
row and column 1 for the
second iteration.

Row Row

Row Row

Col Col

Col Col

Inner Inner

Inner Inner

LU Decomposition
Recursive Cache Oblivious Algorithm

287

Diag Row

Col Diag

• Now the Inner quadrant
is done and ready to be
passed to diag, and
perform what would be
the third iteration.

Row Row

Row Row

Col Col

Col Col

Diag Row

Col Inner

LU Decomposition
Recursive Cache Oblivious Algorithm

288

Diag Row

Col Diag

• And the final step is diag
on the last block, for the
fourth iteration.

Row Row

Row Row

Col Col

Col Col

Diag Row

Col Diag

LU Decomposition
Recursive Cache Oblivious Algorithm

And now code for the serial version Diag Row

Col Inner
void rec_diag(int iter, int mat_size) {

int half = mat_size/2;
if(mat_size == 1) {

diag_op(block_list[iter][iter]);
} else {

rec_diag (iter, half);
rec_row (iter, iter+half, half);
rec_col (iter, iter+half, half);
rec_inner(iter, iter+half, iter+half, half);
rec_diag (iter+half, half);

}
}

LU Decomposition
Recursive Cache Oblivious Algorithm

290

void rec_row(int iter, int i, int mat_size) {
int half= mat_size/2;
if(mat_size == 1) {

row_op(block_list[iter][i],
block_list[iter][iter]);

} else {
//left side
rec_row (iter, i, half);
rec_inner(iter, iter+half, i, half);
rec_row (iter+half, i, half);
//right side
rec_row (iter, i+half, half);
rec_inner(iter, iter+half, i+half, half);
rec_row (iter+half, i+half, half);

}
}

Row Row

Inner Inner

LU Decomposition
Recursive Cache Oblivious Algorithm

291

void rec_col(int iter, int i, int mat_size) {
int half= mat_size/2;
if(mat_size == 1) {

col_op(block_list[i][iter],
block_list[iter][iter]);

} else {
//top half
rec_col (iter, i, half);
rec_inner(iter, i, iter+half, half);
rec_col (iter+half, i, half);
//bottom half
rec_col (iter, i+half, half);
rec_inner(iter, i+half, iter+half, half);
rec_col (iter+half, i+half, half);

}
}

Col Inner

Col Inner

LU Decomposition
Recursive Cache Oblivious Algorithm

292

void rec_inner(int iter,
int i, int j, int mat_size) {

int half = mat_size/2;
int offset_i = i+half;
int offset_j = j+half;

if(mat_size == 1){
inner_op(block_list[i][j],

block_list[iter][j],
block_list[i][iter]);

} else {
rec_inner(iter, i, j, half);
rec_inner(iter, i, offset_j, half);
rec_inner(iter, offset_i, j, half);
rec_inner(iter, offset_i, offset_j, half);

rec_inner(iter+half, i, j, half);
rec_inner(iter+half, i, offset_j, half);
rec_inner(iter+half, offset_i, j, half);
rec_inner(iter+half, offset_i, offset_j, half);

}
}

Inner Inner

Inner Inner

LU Decomposition
Recursive Cache Oblivious Algorithm

293

• Adding only tasking directives with depend the clause to this
serial version would result in the program creating the same
tasks as the previous version.

• In order to get the locality benefits of the cache oblivious
algorithm, a cutoff is needed.

LU Decomposition
Recursive Cache Oblivious Algorithm

294

void rec_diag(int iter, int mat_size) {
int half = mat_size/2;
if(half == nesting_size_cutoff) {

#pragma omp task depend(inout: block_list[iter][iter])
rec_diag (iter, half);

#pragma omp task depend(in: block_list[iter][iter]) \
depend(inout: block_list[iter][iter+half])

rec_row (iter, iter+half, half);
#pragma omp task depend(in: block_list[iter][iter]) \

depend(inout: block_list[iter+half][iter])
rec_col (iter, iter+half, half);

#pragma omp task depend(in: block_list[iter][iter+half],
block_list[iter+half][iter]) \

depend(inout: block_list[iter+half][iter+half])
rec_inner(iter, iter+half, iter+half, half);

#pragma omp task depend(inout: block_list[iter+half][iter+half])
rec_diag (iter+half, half);

} else if(mat_size == 1) {
diag_op(block_list[iter][iter]);

} else {
rec_diag (iter, half);
rec_row (iter, iter+half, half);
rec_col (iter, iter+half, half);
rec_inner(iter, iter+half, iter+half, half);
rec_diag (iter+half, half);

}
}

