

INTREPID TO AURORA, THE EVOLUTION OF HPC ARCHITECTURES AT THE ALCF

SCOTT PARKER Lead, Performance Engineering Team Argonne Leadership Computing Facility

July 27, 2020

ARGONNE LEADERSHIP COMPUTING FACILITY

- The Argonne Leadership Computing Facility (ALCF) was established in 2006 as one of two DOE funded leadership computing facilities, along with the Oak Ridge LCF
 - Goal of the LCFs is to provide the computational science community with a leadingedge computing capability dedicated to breakthrough science and engineering
 - Typical have systems at or near the top of the Top 500 list
 - Allocations provided through open INCITE program
- Broader HPC landscape:
 - Other DOE funded facilities:
 - National Energy Research Scientific Computer Center (NERSC)
 - NNSA Lawrence Livermore, Los Alamos, Sandia
 - Exascale Computing Project
 - National Science Foundation XSEDE (TACC, PSC, SDSC, NCSA)
 - World wide: Japan, China, Europe

ARGONNE LEADERSHIP COMPUTING FACILITY RESOURCES

- 2008: Intrepid
 - ALCF accepts 40 racks (160k cores) of Blue Gene/P (557 TF)
- 2012: Mira
 - 48 racks of Blue Gene/Q (10 PF) in production at ALCF
- 2016: Theta
 - ALCF accepts 12 PF Cray XC40 with Xeon Phi (KNL)
- 2021: Aurora
 - One Exaflop Intel/Cray GPU machine to be delivered in 2021

HPC ARCHITECTURE

ELEMENTS OF A SUPERCOMPUTER

- Processor architecturally optimized to balance complexity, cost, performance, and power
- Memory generally commodity DDR, amount limited by cost
- Node may contain multiple processors, memory, and network interface
- Network optimized for latency, bandwidth, and cost
- IO System complex array of disks, servers, and network
- Software Stack compilers, libraries, tools, debuggers, …
- Control System job launcher, system management

PROCESSOR PERFORMANCE

Many different approaches to increasing processor performance-

Increase serial performance:

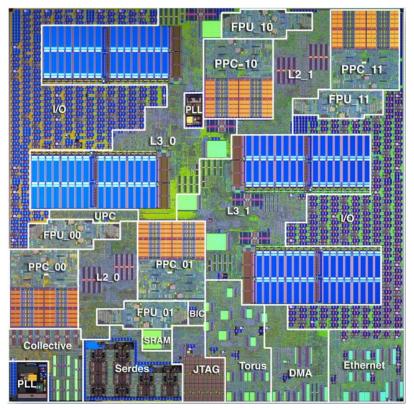
- Increase clock speed
 - clock speed increases until around
 2006 were enabled by Denard scaling
- Lower memory latency:
 - · Caches
 - · Pre-fetchers
 - Specialized instructions and hardware multiply-add instructions, tensor operations

• Add Parallelism:

- Instruction level parallelism
 - Instruction pipe-lining
 - Superscalar execution
 - · Out-of-order execution
 - Speculative execution & Branch prediction
- · Vectorization
- . Hardware threads
- Multiple cores
- Multiple sockets
- Multiple nodes

INTREPID: IBM BLUE GENE/P POWERPC 450

INTREPID


- 2008 ALCF Blue Gene/P System:
 - 40,960 nodes / 163,840 PPC cores
 - 80 Terabytes of memory
 - Peak flop rate: 557 Teraflops
 - Linpack flop rate: 450.3
 - #6 on the Top500 list
- Storage:
 - 8 Petabytes of disk storage with an I/O rate of 80 GB/s
 - 8 Petabytes of archival storage (10,000 volume tape archive)

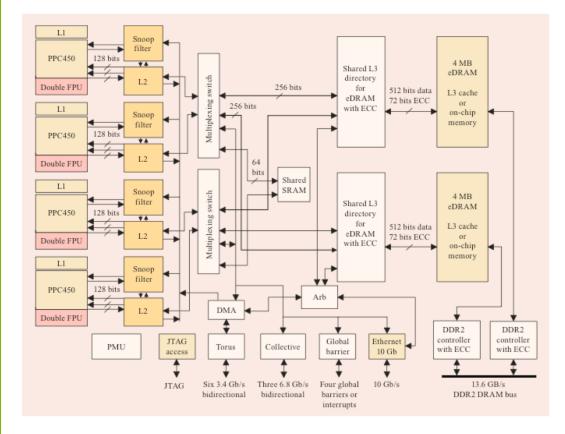
BLUE GENE/P COMPUTE CHIP DIE PHOTO

- Size: 170 mm (13mm x 13 mm)
- Process : 90 nm
- Transistors: 208 M
- 4 CPU core per node
- Clock Speed: 850 MHz
- Peak performance: 3.4 GFlops/core, 13.6 GFlops/node
- 2 GB of DDR 2 memory per node
- 5 network interfaces on chip

POWERPC 450 CPU

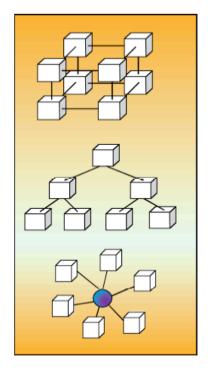
- In order execution
- Dual Issue can issues two instructions per cycle, must be to different pipelines
- Two wide floating point vector instructions

Four Execution Pipelines:


- Load/Store (L-Pipe)
- Simple Integer (J-Pipe)
- Complex Integer (I-Pipe)
- Floating Point
 - FMA
 - Vector

• 7 Stage instruction pipeline:

- Instruction Fetch
- Instruction Decode
- Issue
- Register Access
- Pipeline line stage 1
- Pipeline line stage 2
- Write Back


BG/P MEMORY HIERARCHY

- L1 Instruction and L1 Data caches:
 - 32 KB total size, 4 cycle latency, 32-Byte line size
- L2 Data cache:
 - **2KB prefetch buffer**, **12 cycle latency**, 16 lines, 128-byte line size
- L3 Data cache:
 - 8 MB, 50 cycles latency, 128-byte line size,
- Memory:
 - Two memory channels
 - 13.6 GB/s memory bandwidth
 - 2GB DDR-2 at 425 MHz, 104 cycles

BLUE GENE/P NETWORK

3 Dimensional Torus

- Interconnects all compute nodes
- Communications backbone for point-to-point (send/receive)
- 3.4 Gb/s on all 12 node links (5.1 GB/s per node)
- 0.5 µs latency between nearest neighbors, 5 µs to the farthest
- MPI: 3 µs latency for one hop, 10 µs to the farthest
- Requires half-rack or larger partition

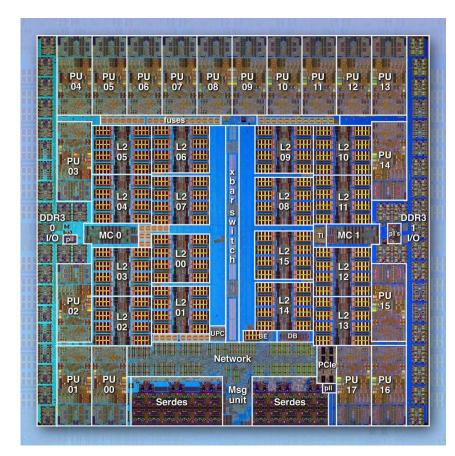
Collective Network

- One-to-all broadcast functionality
- Reduction operations for integers and doubles
- 6.8 Gb/s of bandwidth per link per direction
- Latency of one way tree traversal 1.3 μs, MPI 5 μs
- Interconnects all compute nodes and I/O nodes

Low Latency Global Barrier and Interrupt

- Latency of one way to reach 72K nodes 0.65 μs, MPI 1.6 μs
 10 Gb/s functional Ethernet
 - Disk I/O
- 1Gb private control (JTAG)
 - Service node/system management

MIRA: IBM BLUE GENE/Q POWERPC A2


ALCF BG/Q SYSTEMS

- 2012 Mira BG/Q system
 - 49,152 nodes / 786,432 cores
 - 768 TB of memory
 - Peak flop rate: 10 PF
 - Linpack flop rate: 8.1 PF
 - #3 on Top 500
- Storage
 - Scratch: 28.8 PB raw capacity, 240 GB/s bw
 - Home: 1.8 PB raw capacity, 45 GB/s bw

BLUEGENE/Q COMPUTE CHIP

Chip • 360 mm² Cu-45 technology (SOI) • 1.5 B transistors

18 Cores

- 16 compute cores 205 GF total
- 17th core for system functions (OS, RAS)
- plus 1 redundant processor
- L1 I/D cache = 16kB/16kB

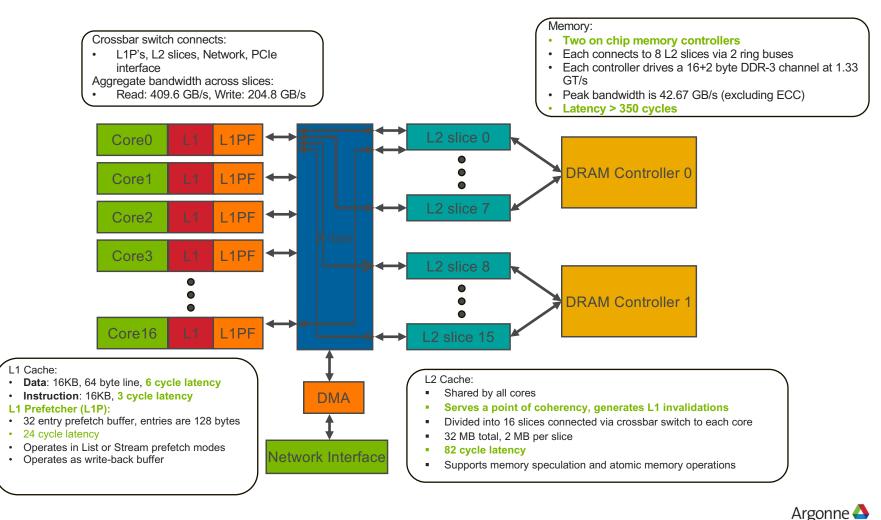
Crossbar switch

- Each core connected to shared L2
- Aggregate read rate of 409.6 GB/s

Central shared L2 cache

- 32 MB eDRAM
- 16 slices

Dual memory controller

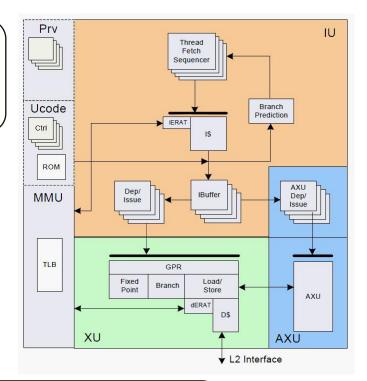

- 16 GB external DDR3 memory
- 42.6 GB/s bandwidth

On Chip Networking

- Router logic integrated into BQC chip
- DMA, remote put/get, collective operations
- 11 network ports

BG/Q MEMORY HIERARCHY

BG/Q Core

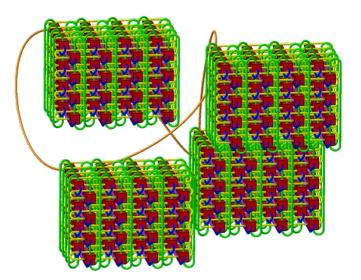

- In-order execution
- Runs at 1.6 GHz
- 4-way Simultaneous Multi-Threading
- Four wide floating point vector instructions

Four Functional Units:

- IU instructions fetch and decode
- XU Branch, Integer, Load/Store instructions
- AXU Floating point instructions
 - Standard PowerPC instructions
 - QPX 4 wide SIMD
- MMU memory management (TLB)

Instruction Issue:

- 2-way concurrent issue if 1 XU + 1 AXU instruction
- A given thread may only issue 1 instruction per cycle
- Two threads may each issue 1 instruction each cycle


THE BG/Q NETWORK

•5D torus network:

- -Achieves high nearest neighbor bandwidth while increasing bisectional bandwidth and reducing hops vs 3D torus
- -Allows machine to be partitioned into independent sub machines
 - No impact from concurrently running codes.
- -Hardware assists for collective & barrier functions over COMM_WORLD and rectangular sub communicators -Half rack (midplane) is 4x4x4x4x2 torus (last dim always 2)

•No separate Collectives or Barrier network:

- -Single network used for point-to-point, collectives, and barrier operations
- Additional 11th link to IO nodes
- Two type of network links
 - Optical links between midplanes
 - Electrical inside midplane

THETA: INTEL XEON PHI KNIGHTS LANDING

THETA

• 2016 Theta:

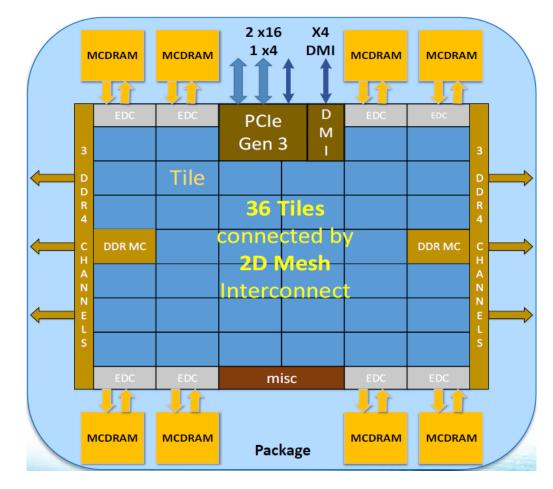
- Cray XC40 system
- 4,392 compute nodes/ 281,088 cores
- 11.7 PetaFlops peak performance

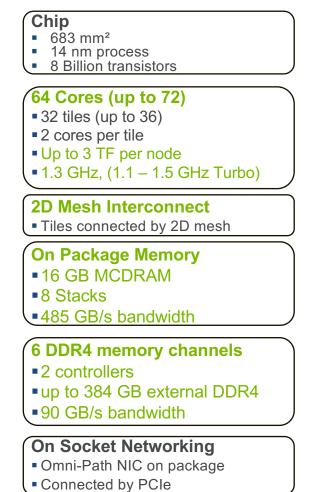
Memory:

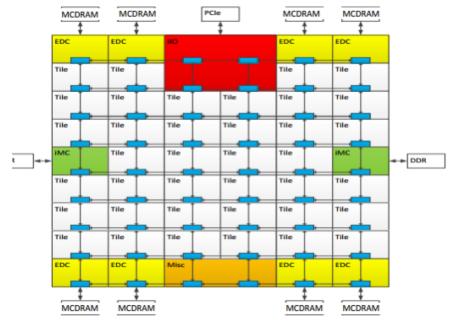
- 892 TB of total system memory
 - 16 GB IPM per node
 - 192 GB DDR4-2400 per node

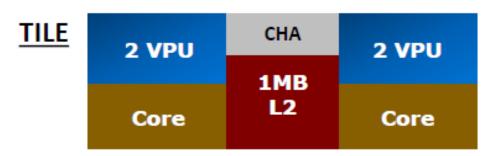
Network:

- Cray Aries interconnect
- Dragonfly network topology

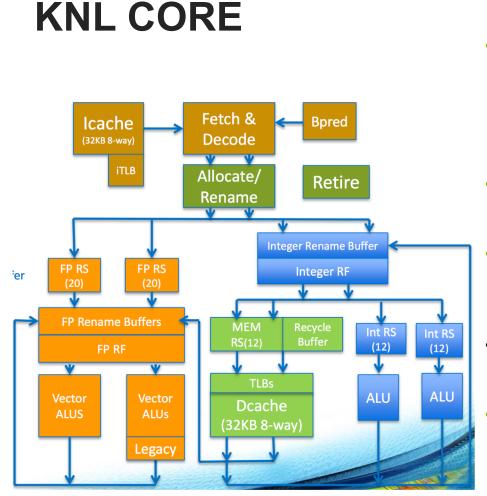

• Filesystems:


- Project directories: 10 PB Lustre file system
- Home directories: GPFS


THETA KNL PROCESSOR (KNL 7230)


KNL Mesh Interconnect

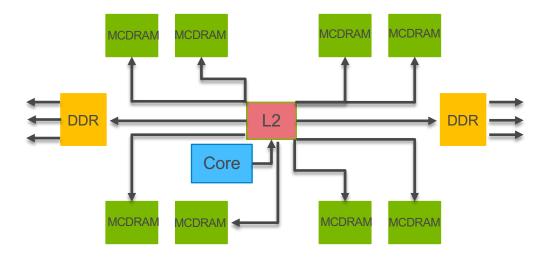
- 2D mesh interconnect connects
 - Tiles (CHA)
 - MCDRAM controllers
 - DDR controllers
 - Off chip I/O (PCIe, DMI)
- YX routing:
 - Go in $Y \rightarrow$ turn \rightarrow Go in X
 - Messages arbitrate on injection and on turn
- Cache coherent
 - Uses MESIF protocol
- Clustering mode allow traffic localization
 - All-to-all, Quadrant, Sub-NUMA



KNL TILE

- Two CPUs
- 2 vector units (VPUs) per core
- 1 MB Shared L2 cache
 - Coherent across all tiles (32-36 MB total)
 - 16 Way
 - 1 line read and 1/2 line write per cycle
- Caching/Home agent
 - Distributed tag directory, keeps L2s coherent
 - Implements MESIF cache coherence protocol
 - Interface to mesh

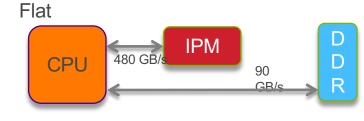
- Based on Silvermont (Atom)
 - Lower power design
 - Out of order execution
 - Binary compatible with Xeon
 - Introduced AVX-512 vector instructions
 - Includes hardware gather/scatter engine
- Instruction Issue & Execute:
 - 2 wide decode/rename/retire
 - 6 wide execute
- Functional units:
 - 2 Integer ALUs (Out of Order)
 - 2 Memory units (In Order reserve, OoO complete)
 - 2 VPU's with AVX-512 (Out of Order)
- L1 data cache
 - 32 KB, 8 way associative
 - 2 64B load ports, 1 64B write port
- 4 Hardware threads per core
 - 1 active thread can use full resources of core
 - ROB, Rename buffer, RD dynamically partitioned between threads
 - Caches and TLBs shared


MEMORY

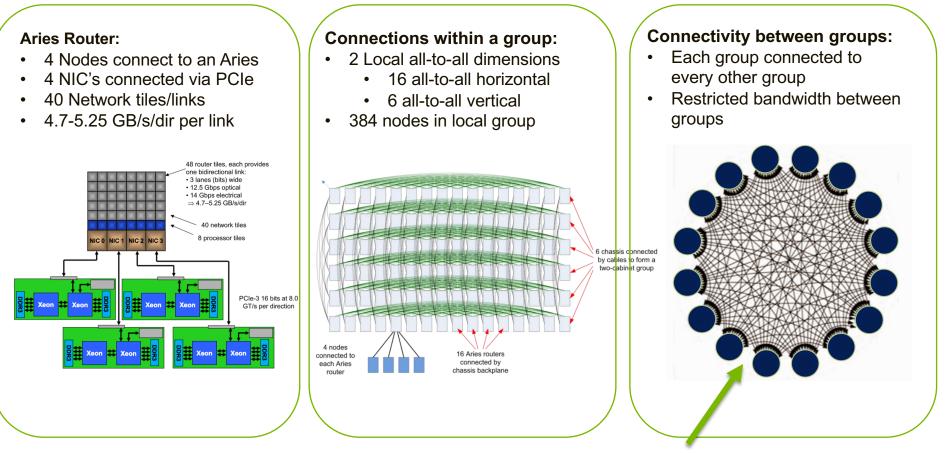
Two memory types

- In Package Memory (IPM)
 - 16 GB MCDRAM
 - ~485 GB/s bandwidth
- Off Package Memory (DDR)
 - Up to 384 GB
 - ~90 GB/s bandwidth

One address space


- Minor NUMA effects
- Sub-NUMA clustering mode creates four NUMA domains

MEMORY MODES - IPM AND DDR SELECTED AT NODE BOOT TIME


Hybrid

- Memory configurations
 - Cached:
 - DDR fully cached by IPM
 - No code modification required
 - Less addressable memory
 - Bandwidth and latency worse than flat mode
 - Flat:
 - Data location completely user managed
 - · Better bandwidth and latency
 - More addressable memory
 - Hybrid:
 - 1/4, 1/2 IPM used as cache rest is flat
- Managing memory:
 - jemalloc & memkind libraries
 - numctl command
 - Pragmas for static memory allocations

ARIES DRAGONFLY NETWORK

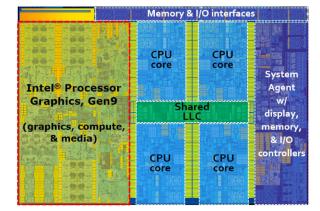
Theta has 12 groups with 12 links between each group

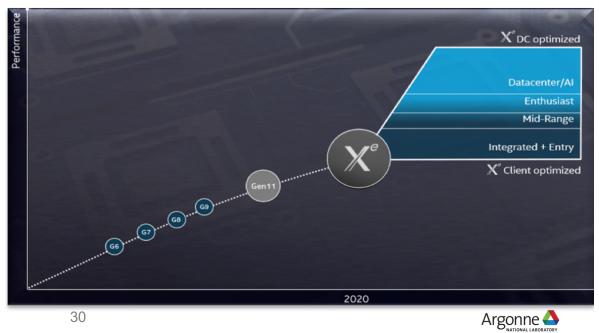
Argonne

AURORA: INTRODUCING THE INTEL X^E GPU

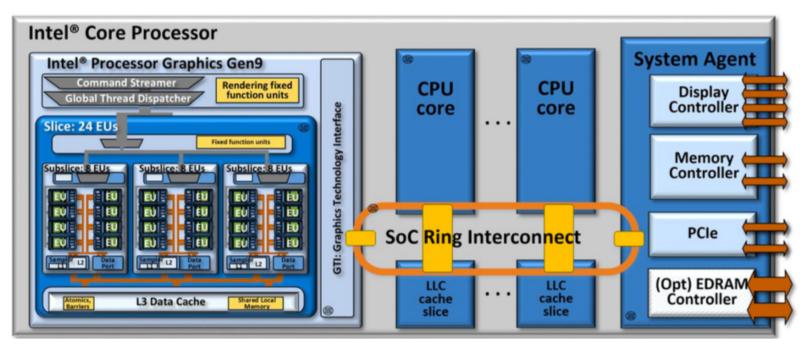
AURORA: A HIGH-LEVEL VIEW

- Intel-Cray machine arriving at Argonne in 2021 ٠
 - Sustained Performance > 1Exaflops
- Intel Xeon processors and Intel X^e GPUs •
 - 2 Xeons (Sapphire Rapids)
 - 6 GPUs (Ponte Vecchio [PVC])
 - All to all connection
 - Low latency and high bandwidth
- Greater than 10 PB of total memory ٠
 - Unified memory architecture across CPUs and GPUs
- Cray Slingshot fabric and Shasta platform ٠
 - 8 fabric end points per node
- Filesystem
 - Distributed Asynchronous Object Store (DAOS)
 - ≥ 230 PB of storage capacity
 - Bandwidth of > 25 TB/s
 - Lustre
 - 150 PB of storage capacity Bandwidth of ~1TB/s



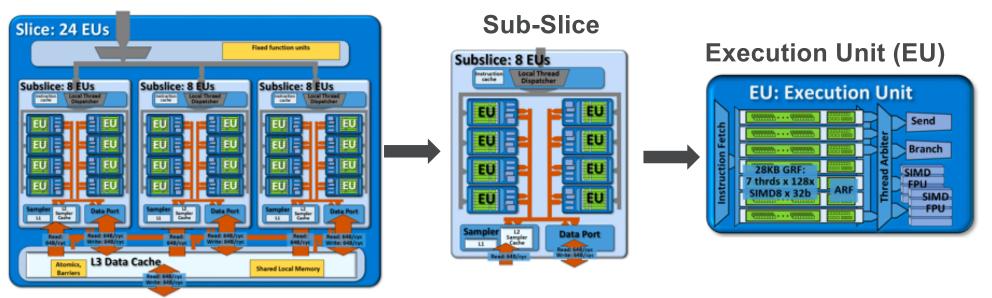


INTEL GPUS


- Intel has been building GPUs integrated with CPUs for over a decade
- Currently released products use the Gen and Gen 11 versions
 - Gen9 used in Skylake
 - Gen11 used in Ice Lake
- Low performance by design due to power and space limits
 - Gen9 peak DP flops: 100-300 GF
 - Gen 9 introduce in 2015
- Next is the X^e (Gen 12) line of integrated and discrete GPUs

Architecture components layout for an Intel Core i7

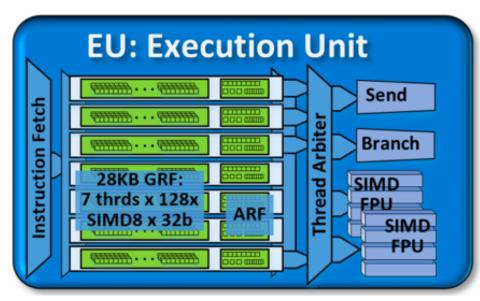
INTEL INTEGRATED GRAPHICS



- Cores and GPU on the same chip and connected by a ring interconnect
- Same memory used by CPU and GPU
- Shared Last Level Cache

INTEL GEN9 ARCHITECTURE HIERARCHY

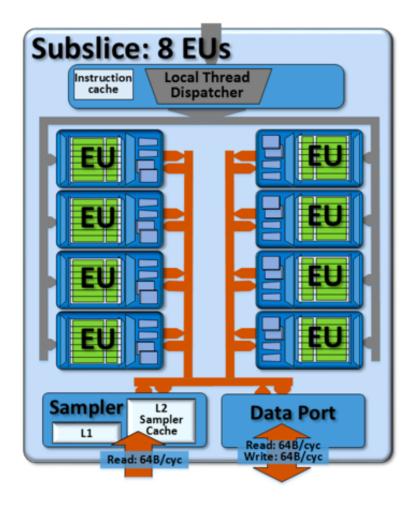
- GPU architectures have hardware hierarchies
 - Built out of smaller scalable units, each level shares a set of resources



Slice

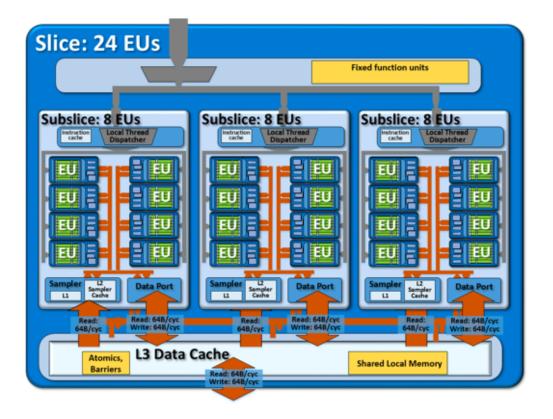
INTEL GEN9 BUILDING BLOCKS: EU

EU: Execution Unit



- Compute processors that executes instructions
- In-order execution
- 7 hardware threads, each with own inst. pointer
- Can issue 4 instructions per cycle (different threads)
- 4 functional units
 - 2 SIMD "FPU"s
 - Floating point instructions
 - Integer instructions
 - One unit performs double precision
 - Fully pipelined
 - Supports FMA
 - Branch
 - Send (memory load/store)
- 28 KB register file
- SIMD instructions
 - SIMD hardware is 128 bits wide
 - 2 DP, 4 SP, 8 HP, ...
 - Instruction SIMD width can vary (1-32)

IDF-2015 release of "The Compute Architecture of Intel Processor Graphics Gen9" – Stephen Junkins


INTEL GEN9 BUILDING BLOCKS: SUBSLICE

- A sub-slice contains:
 - 8 EUs
 - Instruction cache
 - Local thread dispatcher
 - L1 & L2 sampler caches
 - Data port (memory load/store)
 - Efficient read/write operations
 - Provides scatter/gather
 - Shared local memory

Intel Gen9 Building Blocks: Slice

A slice contains:

- 3 subslices
- L3 cache
- Shared local memory
- Fixed functional units
- Slices are a scalable architectural unit
 - Products available with 1-3 slices
- Slices are connected at the L3

GEN9 (GT4) GPU CHARACTERISTICS

Characteristics	Value	Notes	
Clock Freq.	1.15 GHz		
Slices	3		1
EUs	72	3 slice * 3 sub-slices * 8 EUs	1
Hardware Threads	504	72 EUs * 7 threads	1
Concurrent Kernel Instances	16,128	504 threads * SIMD-32	1
L3 Data Cache Size	1.5 MB	3 slices * 0.5 MB/slice	1
Max Shared Local Memory	576 KB	3 slice * 3 sub-slices * 64 KB/sub-slice	1
Last Level Cache Size	8 MB		1
eDRAM size	128 MB		1
32b float FLOPS	1152 FLOPS/cycle	72 EUs * 2 FPUs * SIMD-4 * (MUL + ADD)	1
64b float FLOPS	288 FLOPS/cycle	72 EUs * 1 FPU * SIMD-2 * (MUL + ADD)	331.2 DP GFI
32b integer IOPS	576 IOPS/cycle	72 EUs * 2 FPUs * SIMD-4	1
			Argonn

INTEL DEVCLOUD

- Intel GPUs and oneAPI software are available to try out on the Intel DevCloud
- oneAPI collection of software components:
 - Compilers (C, C++, Fortran)
 - Programming models (DPC++, OpenMP, OpenCL)
 - Libraries (OneMKL, OneDNN, ...)
 - Tools (Vtune, Advisor)
- A development sandbox to develop, test and run workloads across a range of Intel CPUs, GPUS, and FPGAs using Intel openAPI Beta software
- Try the oneAPI toolkits, compilers, performance libraries, and tools
- No downloads, no hardware acquisition, no installation
- Free access:
 - <u>https://software.intel.com/content/www/us/en/develop/tools/devcloud.html</u>

Argonne

www.anl.gov