
exascaleproject.org

Scientific Software Design

Anshu Dubey
Argonne National Laboratory

Software Productivity Track, ATPESC 2020

See slide 2 for
license details

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Mark C. Miller, Katherine M. Riley,

and James M. Willenbring, Software Productivity Track, in Argonne Training Program for Extreme Scale
Computing (ATPESC), August 2020, online. DOI: 10.6084/m9.figshare.12719834

• Individual modules may be cited as Speaker, Module Title, in Software Productivity Track…

Acknowledgements
• Additional contributors include: Patricia Grubel, Rinku Gupta, Mike Heroux, Alicia Klinvex, Jared O’Neal, David Rogers,

Deborah Stevens
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing

Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for
the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence
Livermore National Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.12719834

3

Architecting scientific codes
Desirable Characteristics and Why They are Challenging

Extensibility

Well defined structure and
modules

Encapsulation of
functionalities

4

Architecting scientific codes
Desirable Characteristics and Why They are Challenging

Extensibility

Well defined structure and
modules

Encapsulation of
functionalities

Same data layout not
good for all solvers. Many
corner cases. Necessary

lateral interactions

5

Architecting scientific codes
Desirable Characteristics and Why They are Challenging

Extensibility Performance

Well defined structure and
modules

Encapsulation of
functionalities

Spatial and temporal
locality of data

Minimizing data
movement

Maximizing scalability

Same data layout not
good for all solvers. Many
corner cases. Necessary

lateral interactions

6

Architecting scientific codes
Desirable Characteristics and Why They are Challenging

Extensibility Performance

Well defined structure and
modules

Encapsulation of
functionalities

Spatial and temporal
locality of data

Minimizing data
movement

Maximizing scalability

Same data layout not
good for all solvers. Many
corner cases. Necessary

lateral interactions

Low arithmetic intensity
solvers with hard

dependencies. Proximity
and work distribution at

cross purposes

7

Architecting scientific codes
Desirable Characteristics and Why They are Challenging

Portability

General solutions that
work without significant

manual intervention
across platforms

8

Architecting scientific codes
Desirable Characteristics and Why They are Challenging

Portability

General solutions that
work without significant

manual intervention
across platforms

Tremendous platform
heterogeneity

A version for each class of
device => combinatorial

explosion

9

Architecting scientific codes
Desirable Characteristics and Why They are Challenging

Portability Verifiability and Maintainability

General solutions that
work without significant

manual intervention
across platforms

Clean code
Documentation

Comprehensive testing

Tremendous platform
heterogeneity

A version for each class of
device => combinatorial

explosion

10

Architecting scientific codes
Desirable Characteristics and Why They are Challenging

Portability Verifiability and Maintainability

General solutions that
work without significant

manual intervention
across platforms

Clean code
Documentation

Comprehensive testing

Tremendous platform
heterogeneity

A version for each class of
device => combinatorial

explosion

Wrong incentives
Designing good tests is

hard

11

Architecting scientific codes

Taming the Complexity: Separation of Concerns

Subject of
research

Model
Numerics

More Stable
Discretization

I/O
Parameters

12

Architecting scientific codes

Taming the Complexity: Separation of Concerns

Subject of
research

Model
Numerics

More Stable
Discretization

I/O
Parameters

Treat differently

13

Architecting scientific codes

Taming the Complexity: Separation of Concerns

Subject of
research

Model
Numerics

More Stable
Discretization

I/O
Parameters

Treat differently

Client Code
Mathematically

complex

Infrastructure
Data structures
and movement

14

Architecting scientific codes

Taming the Complexity: Separation of Concerns

Subject of
research

Model
Numerics

More Stable
Discretization

I/O
Parameters

Treat differently

Client Code
Mathematically

complex

Infrastructure
Data structures
and movement

Hide from one
another

15

Architecting scientific codes

Taming the Complexity: Separation of Concerns

Subject of
research

Model
Numerics

More Stable
Discretization

I/O
Parameters

Treat differently

Client Code
Mathematically

complex

Infrastructure
Data structures
and movement

Hide from one
another

logically separable
functional units of

computation

Encode into framework

Differentiate between
private and public

Define interfaces

Applies to both kind

16

Requirements

Software Architecture API Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities

A Design Model for Separation of Concerns

17

• Infrastructure design
– Take time to discuss, iterate over

requirements and specification
– Keep end users involved

• Not doing so leaves possible options on
the table

• Simple is better
– Flexibility Vs transparent to the user

• Flexibility wins

8/5/2020 17

Design Considerations

18

• Infrastructure design
– Take time to discuss, iterate over

requirements and specification
– Keep end users involved

• Not doing so leaves possible options on
the table

– Keep API independent of numerics

• Simple is better
– Flexibility Vs transparent to the user

• Flexibility wins

8/5/2020 18

Design Considerations

• Model/numerics design
– Abstract away the infrastructure

knowledge as much as possible
– Encapsulate
– Let model needs guide API
– Design flexible API to accommodate

quick upgrades to methods

• Simple is better
– Flexibility Vs transparent to the user

• Flexibility wins

19

The Running Example

20

• Specification
– Solve heat equation with some initial and boundary conditions
– Apply different integration methods

Problem Specification - Design Considerations

• What is model here?
– Initial conditions
– Boundary conditions
– Integration

• What is infrastructure here?
– Discretization/ State
– Verification
– I/O
– Application of initial conditions
– Runtime parameters
– Comparison

21 8/5/2020 21

Infrastructure API

• process_args(int argc, char **argv)
• static void initialize(void)
• void copy(int n, double *dst, double

const *src)
• void write_array(int t, int n, double dx,

double const *a)
• void set_initial_condition(int n, double

*a, double dx, char const *ic)

22

• double l2_norm(int n, double const *a, double const *b)
• static void r83_np_fa(int n, double *a)
• static void r83_np_sl (int n, double const *a_lu, double const *b, double *x)
• bool update_solution_crankn(int n, double *curr, double const *last, double const

*cn_Amat, double bc_0, double bc_1)
• bool update_solution_upwind15(int n, double *curr, double const *last, double

alpha, double dx, double dt, double bc_0, double bc_1)
• void compute_exact_solution(int n, double *a, double dx, char const *ic, double

alpha, double t, double bc0, double bc1)
• bool update_solution_ftcs(int n, double *uk1, double const *uk0, double alpha,

double dx, double dt, double bc0, double bc1)

Numerics API

23

Real view : A
whole domain
with many
operators

Functional
decomposition

Virtual view :
domain sections
as stand-alone
computation unit

Virtual view
collection of
components

Spatial
decomposition

Parallelization
and scaling
optimization

Memory
access and
compute
optimization

 Virtual view of functionalities
 Decomposition into units and definition of

interfaces

Example: Architecting Multiphysics PDEs

24

Requirements

Software Architecture API Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities

This worked with
distributed memory

parallelization model

No longer sufficient
needs refinement

A Design Model for Separation of Concerns

25 8/5/2020 25

Additional Considerations for Infrastructure
• Configurability

– Components or
kernels

– Levels of access
(hierarchical)

– Layered API

• Task orchestration
– Mapping tasks to

devices
– CPU, accelerators,

specialized devices
– Managing data

movement between
devices

In
te

rfa
ce

s

W
ra

pp
er

 la
ye

r

infrastructure model

26

Real view : A
whole domain
with many
operators

Virtual view :
domain sections
as stand-alone
computation unit

Parallelization
and scaling
optimization

Spatial
Decomposition
Blocks/tiles

Separation of Concerns, Tasks

Dynamic
Scheduling

Load Distribution

Framework

 load balancing, work redistribution
 Meta-information about domain sections
 Possible asynchronization at block and operator level
 No compute optimization here

Example: Architecting Multiphysics PDEs

27

Real view : A
whole domain
with many
operators

Functional
decomposition

Virtual view
collection of
components

Memory
access and
compute
optimization

composition

Abstraction at
solver level

code
transformation

Fusing/inlining
Functions

Framework Abstractions for
performance
portability

 Ability to express
operations at a
higher level

 Toolchain
to configure

 compilers
to optimize

Example: Architecting Multiphysics PDEs

28

Other Considerations
• Leverage existing software

– Libraries may have better solvers
• Off-load expertise and maintenance

– Examine the interoperability constraints
• Many times the cost is justified even if there is more data movement

• More available packages are attempting to achieve interoperability
– See if a combination meets your requirements

• May be worthwhile to let the library dictate data layout if the
corresponding operations dominate

Institute a rigorous verification regime at the outset

29

TAKEAWAYS
• DIFFERENTIATE BETWEEN SLOW CHANGING AND FAST

CHANGING COMPONENTS OF YOUR CODE
• TAKE YOUR TIME TO UNDERSTAND THE REQUIREMENTS OF

YOUR INFRASTRUCTURE
• IMPLEMENT SEPARATION OF CONCERNS
• DESIGN WITH PORTABILITY, EXTENSIBILITY, REPRODUCIBILITY

AND MAINTAINABILITY IN MIND
• LEVERAGE EXISTING CAPABILITIES WHERE POSSIBLE
…….QUESTIONS ?

	Scientific Software Design
	License, Citation and Acknowledgements
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	A Design Model for Separation of Concerns
	Design Considerations
	Design Considerations
	�The Running Example
	Problem Specification - Design Considerations
	Infrastructure API
	Numerics API
	Example: Architecting Multiphysics PDEs
	A Design Model for Separation of Concerns
	Additional Considerations for Infrastructure
	Separation of Concerns, Tasks
	composition
	Other Considerations
	Slide Number 29

