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Automated machine learning for deep 
learning
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Lower-level problem:

Upper-level problem:

Architecture space Hyperparameter space
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AMBS: Asynchronous model-based search

– Framework:
• Initialization phase

–Random or Latin 
hypercube  sampling

• Iterative phase
– Fit model
– Sample using the model
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Example Surrogate Model Fitted to Sampled Performance
(iterative refinement improves the learning model)



Bayesian optimization 
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functions

• Usual Gaussian process regression cannot handle nonordinal space natively
• Appropriate methods: random forest, extra tree regressor, Bayesian NN
• We use Random Forest



Bayesian optimization 

11
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Bayesian optimization 
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Multipoint asynchronous sampling
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Naive Conditioned



Constant liar scheme for asynchronous 
update   
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Comparison of search methods
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Target platform: Theta@ALCF (128 KNL nodes) 
Stopping criterion: 2 hours 



Comparison of search methods
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Target platform: Theta@ALCF (128 KNL nodes) 
Stopping criterion: 2 hours 



Scaling search methods
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Target platform: Theta@ALCF (128 KNL nodes) 
Benchmark: rnn2; Stopping criterion: 2 hours 



AMBS vs RS
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Target platform: Cooley (64 nodes Haswell + NVIDIA Tesla K80) 
Benchmark: cifar10cnn;  Stopping criterion: 1 hour 
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