

Data Parallel Deep Learning

Huihuo Zheng

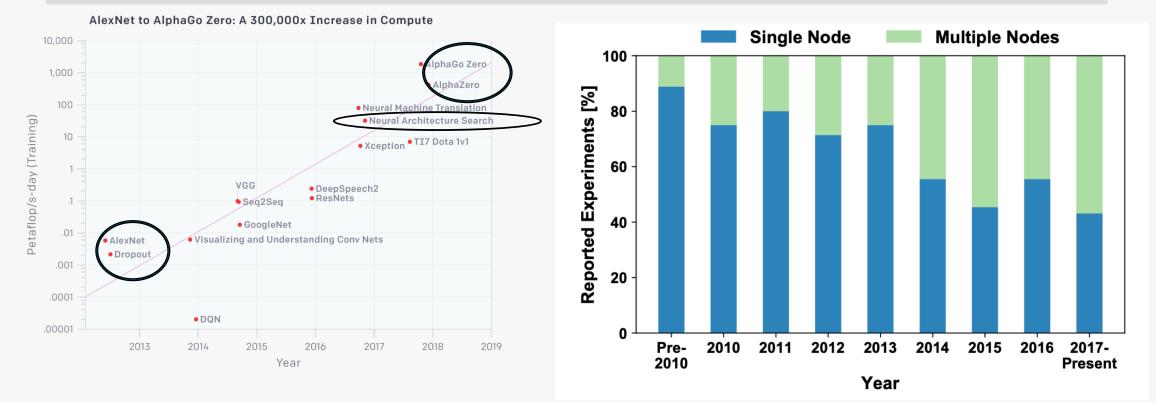
Argonne Leadership Computing Facility August 7, 2020

huihuo.zheng@anl.gov

www.anl.gov

The need for distributed training on HPC

"Since 2012, the amount of compute used in the largest AI training runs has been increasing exponentially with a 3.5 month doubling time (by comparison, Moore's Law had an 18 month doubling period)."



https://openai.com/blog/ai-and-compute/

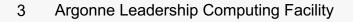
Tal Ben-Nun and Torsten Hoefler, arXiv:1802.09941

Distributed deep learning for ResNet-50

$TRAINING \ \text{TIME AND } TOP-1 \ \text{VALIDATION ACCURACY WITH } ResNet-50 \ \text{on } ImageNet$

	Batch	Processor	DL	Time	Accuracy
	Size		Library		
He et al. [1]	2016 256	Tesla P100 \times 8	Caffe	29 hours	75.3 %
Goyal et al. [2]	8,192	Tesla P100 \times 256	Caffe2	1 hour	76.3 %
Smith et al. [3]	$8,\!192\rightarrow16,\!384$	full TPU Pod	TensorFlow	30 mins	76.1 %
Akiba et al. [4]	32,768	Tesla P100 \times 1,024	Chainer	15 mins	74.9 %
Jia et al. [5]	65,536	Tesla P40 \times 2,048	TensorFlow	6.6 mins	75.8 %
Ying et al. [6]	65,536	TPU v3 × 1,024	TensorFlow	1.8 mins	75.2 %
Mikami et al. [7]	55,296	Tesla V100 \times 3,456	NNL	2.0 mins	75.29 %
Yamazaki et al	2019 81,920	Tesla V100 $ imes$ 2,048	MXNet	1.2 mins	75.08%

Quoted from Masafumi Yamazaki, arXiv:1903.12650

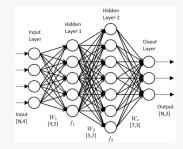


The need for distributed training on HPC

- Increase of model complexity leads to dramatic increase of the amount of computation;
- Increase of the size of dataset makes sequentially scanning the whole dataset increasingly impossible;
- The increase in computational power has been mostly coming (and will continue to come) from parallel computing;
- Coupling of deep learning to traditional HPC simulations might require distributed training and inference.

Examples of scientific large scale deep learning

- Thorsten Kurth, Exascale Deep Learning for Climate Analytics, arXiv:1810.01993 (Gordon Bell Prize)
- R. M. Patton, Exascale Deep Learning to Accelerate Cancer Research, arXiv:1909.1229
- N. Laanait, Exascale Deep Learning for Scientific Inverse Problems, arXiv:1909.11150
- W. Dong et al, Scaling Distributed Training of Flood-Filling Networks on HPC Infrastructure for Brain Mapping, arXiv:1905.06236
- A Khan, Deep learning at scale for the construction of galaxy catalogs in the Dark Energy SurveyPhysics Letters B 795, 248-258

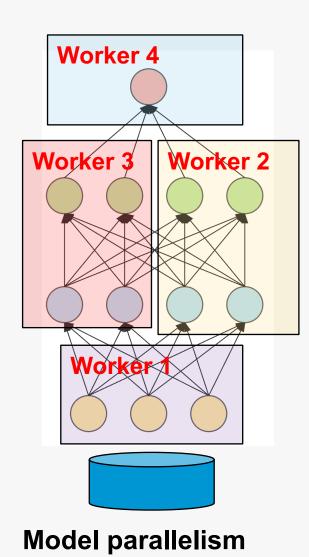


4 Argonne Leadership Computing Facility

Outline

- Different parallelisms for distributed training
- Mini-batch stochastic gradient descent
- Data parallel training using Horovod
- Hands-on examples
 - https://github.com/argonne-lcf/ATPESC_MachineLearning

Parallelization schemes for distributed deep learning



import torch
import torch.nn as nn
import torch.optim as optim

```
class ToyModel(nn.Module):
    def __init__(self):
        super(ToyModel, self).__init__()
        self.net1 = torch.nn.Linear(10, 10).to('cuda:0')
        self.relu = torch.nn.ReLU()
        self.net2 = torch.nn.Linear(10, 5).to('cuda:1')
```

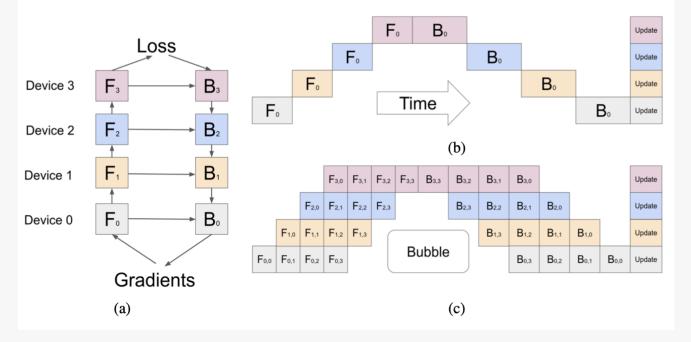
```
def forward(self, x):
    x = self.relu(self.net1(x.to('cuda:0')))
    return self.net2(x.to('cuda:1'))
```

```
model = ToyModel()
loss_fn = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.001)
```

```
optimizer.zero_grad()
outputs = model(torch.randn(20, 10))
labels = torch.randn(20, 5).to('cuda:1')
loss_fn(outputs, labels).backward()
optimizer.step()
```

PyTorch multiple GPU model parallelism within a node

Parallelization schemes for distributed deep learning



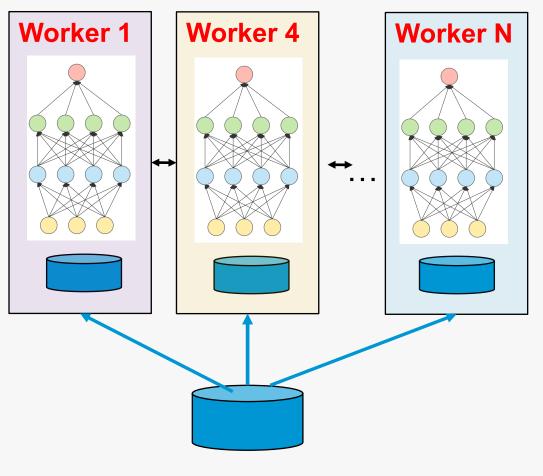
Pipeline libraries:

- GPipe: arXiv:1811.06965
- Pipe-torch: DOI: 10.1109/CBD.2019.00020
- PipeDream: arXiv:1806.03377
- HetPipe: arXiv:2005.14038
- DAPPLE: arXiv:2007.01045
- PyTorch Distributed RPC Frameworks: <u>https://pytorch.org/tutorials/intermediate/</u> <u>dist_pipeline_parallel_tutorial.html</u>

Pipeline parallelization

- Partition model layers into multiple groups (stages) and place them on a set of inter-connected devices.
- Each input batch is further divided into multiple micro-batches, which are scheduled to run over multiple devices in a pipelined manner.

Parallelization schemes for distributed deep learning



Data parallelism

- TensorFlow Distributed Training using tf.distribute.Strategy (*MirroredStrategy, MultiWorkerMirroredStrategy, ParameterServerStrategy*) <u>https://keras.io/guides/distributed_training/</u>
- PyTorch Distributed Training (torch.nn.parallel.DistributedDataParallel <u>https://leimao.github.io/blog/PyTorch-Distributed-Training/</u>
- Horovod Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MxNet

Mini-batch stochastic gradient descent

Minimizing the loss: $L(w) = \frac{1}{|X|} \sum_{x \in X} l(x, w)$

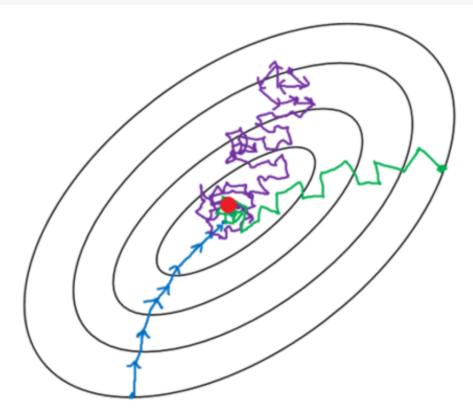
Stochastic Gradient Descent

- 1: **for** t = 0 **to** T **do**
- 2: $z \leftarrow \text{Random element from } S$
- 3: $g \leftarrow \nabla \ell(w^{(t)}, z)$ 4: $w^{(t+1)} \leftarrow w^{(t)} + u(q, w^{(0, \dots, t)}, t)$
- 5: **end for**

Mini-batch Gradient Descent

$$w_{t+1} = w_t - \eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l(x, w_t)$$

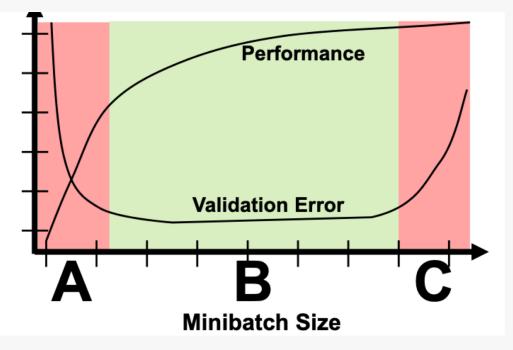
Learning rate Mini-batch



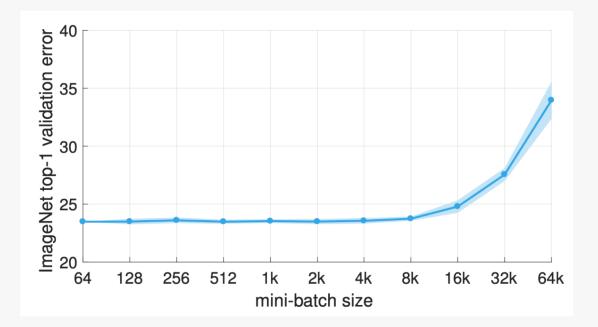
- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent

Minibatch stochastic gradient descent

$$w_{t+1} = w_t - \eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l(x, w_t)$$



How to choose the minibatch size n?



Minibatch Size Effect on Accuracy and Performance

Tal Ben-Nun and Torsten Hoefler, arXiv:1802.09941

10 Argonne Leadership Computing Facility

Validation error for different minibatch size for Resnet50 P. Goyal et al,arXiv: 1706.02677

Generalization gap for large mini-batch size

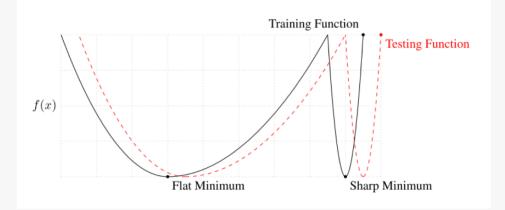
Large mini-batch size training tends to be trapped at local minimum with lower testing accuracy (generalize worse).

	Training Accuracy		
Name	SB	LB	
F_1	$99.66\% \pm 0.05\%$	$99.92\% \pm 0.01\%$	
F_2	$99.99\% \pm 0.03\%$	$98.35\% \pm 2.08\%$	
C_1	$99.89\% \pm 0.02\%$	$99.66\% \pm 0.2\%$	
C_2	$99.99\% \pm 0.04\%$	$99.99\% \pm 0.01\%$	
C_3	$99.56\% \pm 0.44\%$	$99.88\% \pm 0.30\%$	
C_4	$99.10\% \pm 1.23\%$	$99.57\% \pm 1.84\%$	

	Testing Accuracy		
Name	SB	LB	
F_1	$98.03\%\pm 0.07\%$	$97.81\% \pm 0.07\%$	
F_2	$64.02\% \pm 0.2\%$	$59.45\% \pm 1.05\%$	
C_1	$80.04\%\pm 0.12\%$	$77.26\%\pm 0.42\%$	
C_2	$89.24\%\pm 0.12\%$	$87.26\%\pm 0.07\%$	
C_3	$49.58\% \pm 0.39\%$	$46.45\%\pm 0.43\%$	
C_4	$63.08\% \pm 0.5\%$	$57.81\%\pm 0.17\%$	

Performance of small-batch (SB) and large-batch (LB) variants of ADAM on the 6 networks

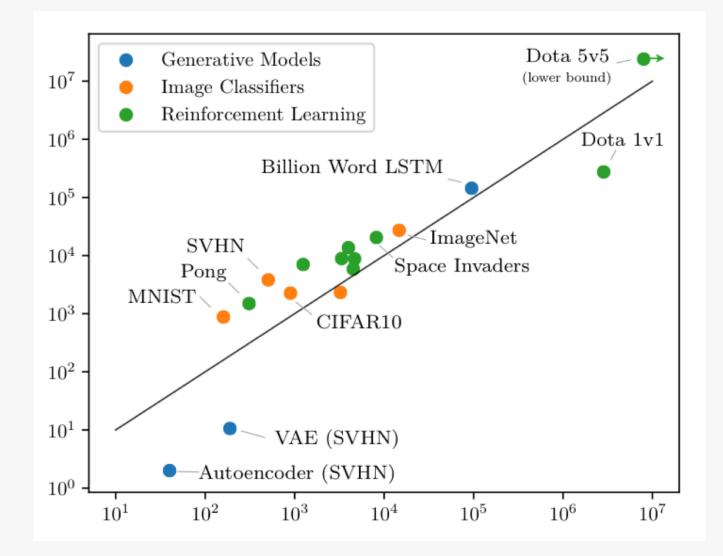
11 Argonne Leadership Computing Facility



"... large-batch ... converge to sharp minimizers of the training function ... In contrast, small-batch methods converge to flat minimizers"

Keskar et al, arXiv:1609.04836

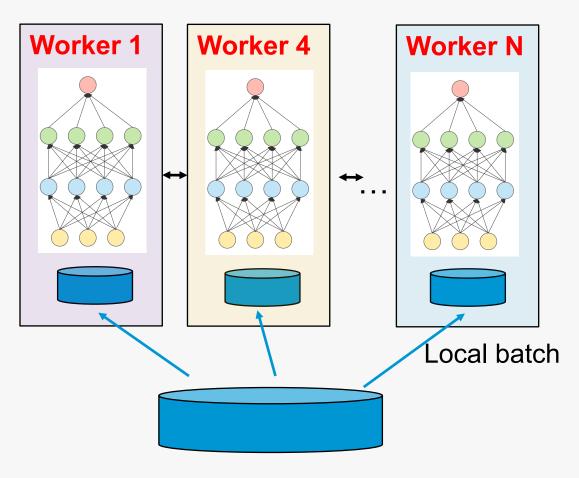
Challenges with large mini-batch training



Predicted critical maximum batch size beyond which the model does not perform well.

S. McCandlish, J. Kaplan, D. Amodei, arXiv:1812.06162

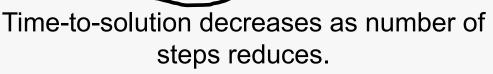
Data parallel training



Mini-batch

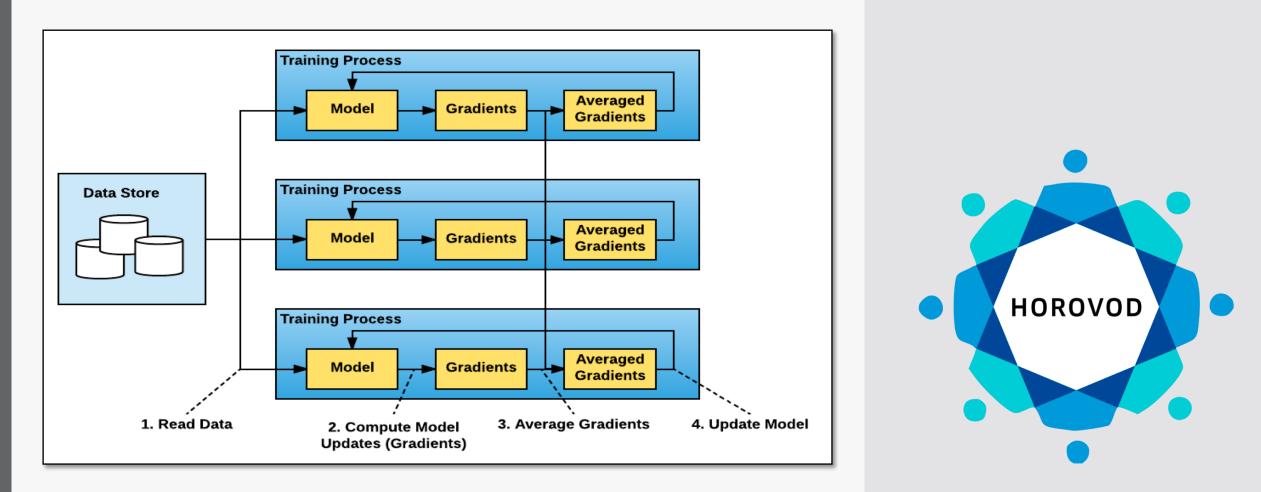
Single worker --> N worker

- Mini-batch size increases by N times so that aggregate throughput increases linearly.
- Learning rate should increase proportionally (warmup steps with smaller learning rate might be needed)



• Gradients are aggregated over all the workers through MPI_Allreduce

Data parallel training with Horovod



https://eng.uber.com/horovod/

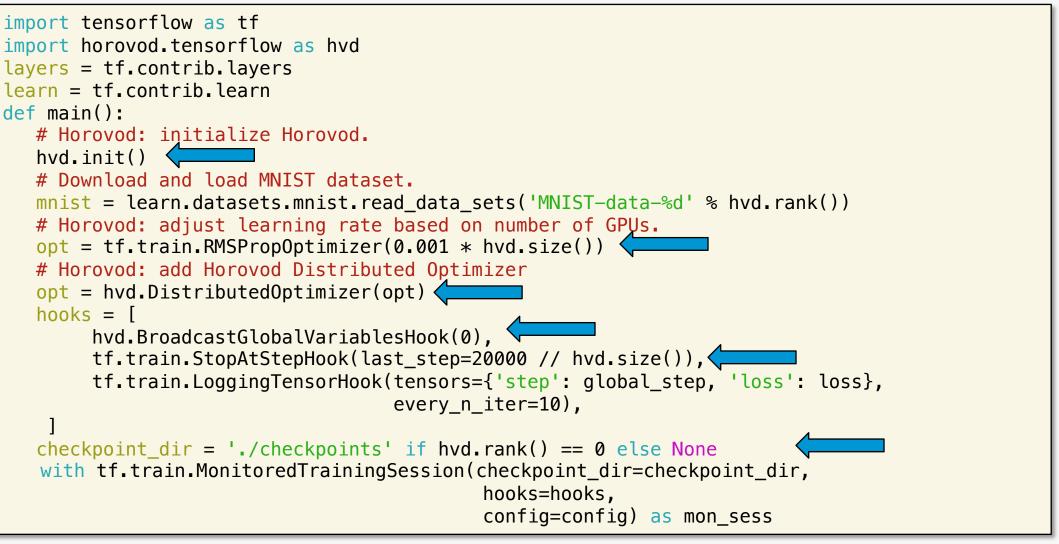
Data parallel training with Horovod

How to change a series code into a data parallel code:

- Import Horovod modules and initialize horovod
- Wrap optimizer in hvd.DistributedOptimizer & scale the learning rate by number of workers
- Broadcast the weights from worker 0 to all the workers
- Worker 0 saves the check point files
- Data loading:
 - Option 1. All the workers scan through the whole dataset in a random way, and decrease the number of steps per epoch by N.
 - Option 2. Divide the dataset and each worker only scans through a subset of dataset.

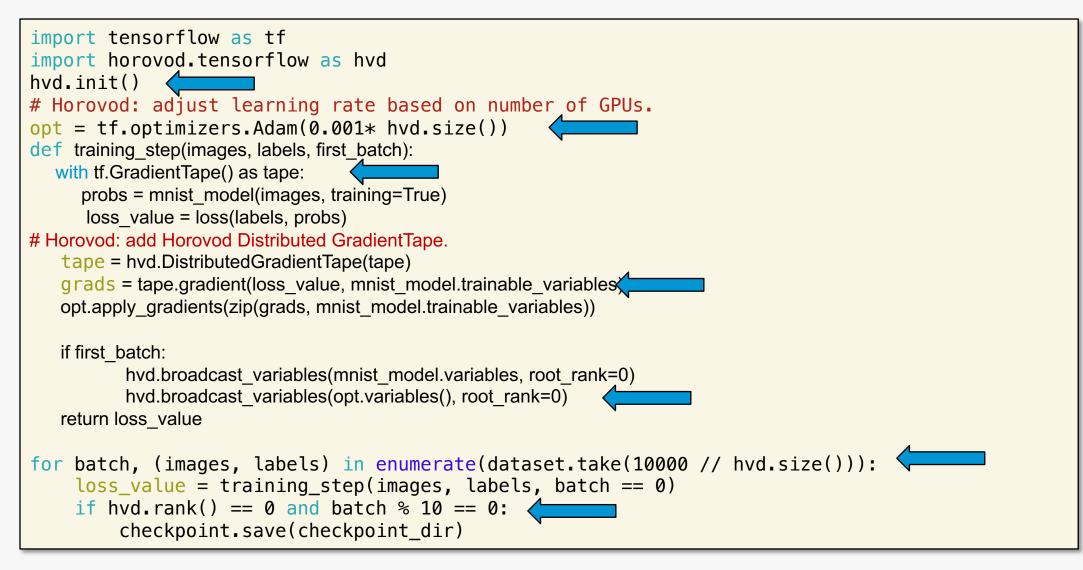
https://eng.uber.com/horovod/

TensorFlow V1 with Horovod



More examples can be found in https://github.com/uber/horovod/blob/master/examples/

TensorFlow V2 with Horovod



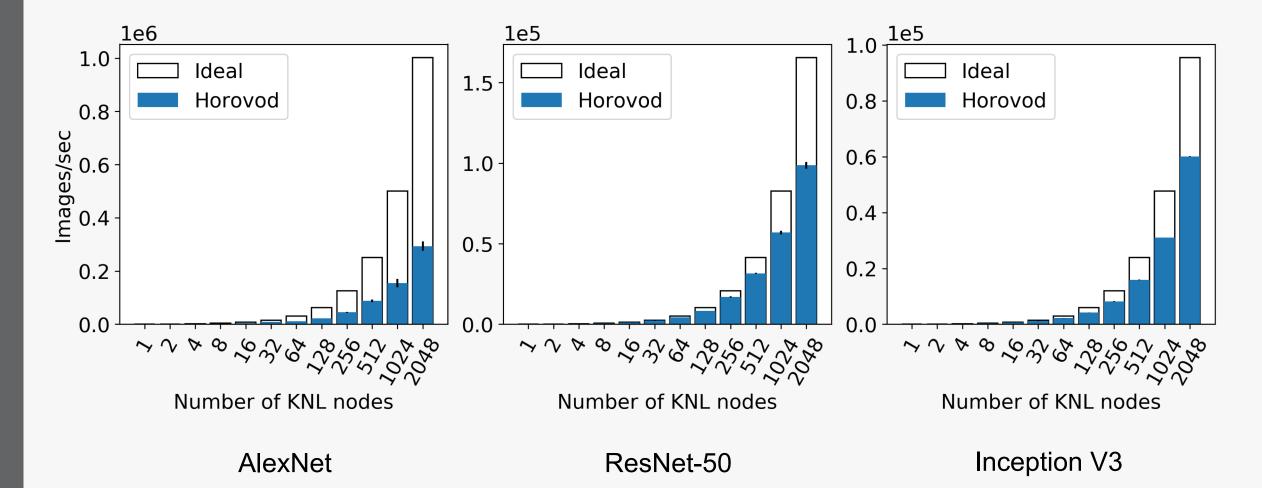
PyTorch with Horovod

More examples can be found in https://github.com/uber/horovod/blob/master/examples/

Keras with Horovod

More examples can be found in https://github.com/uber/horovod/blob/master/examples/

Scaling TensorFlow using Data parallelism on Theta @ ALCF: fixing local batch size = 512



I/O and data management in distributed deep learning

Streaming I/O provided by frameworks

- TensorFlow Data Pipeline
- PyTorch Data Loader
- Keras DataGenerator

Some suggestions for large scale training

- Organize your dataset in a reasonable way (file per sample shall be avoided if the file is too small; share file performs poorly in some file system, e.g., Lustre)
- Parallel IO might be needed at large scale
- Shuffling in the memory instead of in I/O
- Taking advantage of the node-local storage on a system, for example, SSD
 @ Theta, Burst buffer @ Summit

We have developed I/O profiling library, **VaniDL** for analyzing DL I/O on HPC. Contact us if you want to know more.

Hands on session

22

I. Running on <u>Google's Colaboratory Platform</u> <u>https://github.com/argonne-lcf/ATPESC_MachineLearning/</u>

DataParallelDeepLearning/google_collab.ipynb

II. Running on Theta

<u>https://github.com/argonne-</u> <u>lcf/ATPESC_MachineLearning/blob/master/DataParallelDe</u> <u>epLearning/handson.md</u>

Thank you! huihuo.zheng@anl.gov

Argonne