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INTRODUCTION TO COVID-19 AND SARS-COV-2
§ Observed first in Wuhan (Dec 2019)

– Quickly spread to the province of 
Hubei and then onto the world

§ Spreads via close contact or through 
respiratory particles 

§ Virus is larger and far more stable than its 
counterparts (SARS and MERS) 
– can live on surfaces for a while

§ Need a comprehensive strategy to 
identify small molecules (or other 
therapeutic strategies) to treat infection 

Veronica Falconieri Hays; Source: Lorenzo Casalino, Zied Gaieb and 
Rommie Amaro, U.C. San Diego (spike model with glycosylations)
https://www.scientificamerican.com/article/a-visual-guide-to-the-sars-cov-2-
coronavirus/



USING AI/ML TO DISCOVER DRUGS THAT CAN 
TARGET SARS-COV-2 PROTEOME
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FIRST RELEASE OF HPC-COMPUTED FEATURES FOR AI-
BASED DRUG SCREENING
23 input datasets, 4.2B molecules, 60 TB of molecular 
features and representations 

Data processing pipeline used ~2M core hours on ALCF 
Theta, TACC Frontera, OLCF Summit

1. Convert each molecule to a canonical SMILES
2. For each molecule, compute: 

a. ~1800 2D and 3D molecular 
descriptors using Mordred 

b. Molecular fingerprints encoding 
structure 

c. 2D images of the molecular structure

Computed data provide crucial input features to AI models
for predicting molecular properties such as docking scores 
and toxicity

Canonical SMILES
23 CSV files with 4.2B molecules

Mordred Descriptors
420,130 CSV files, 48.70TB

Molecular Fingerprints
4,221 CSV files with base64 
encoded fingerprints, 578.27GB

2D images
420,707 Pickle GZ files, 11.48 TB

https://2019-ncovgroup.github.io/data/



THE COVID’19 DATA PIPELINE: 
USING AI AND SUPERCOMPUTERS TO ACCELERATE DRUG 
DEVELOPMENT

CHEMICAL 
LIBRARY DATABASE

AND MORE

known 
molecules4B

COMPUTING
RESOURCESCANONICALIZATION COMPUTE FEATURES DEEP LEARNING 

FILTERING

FINGERPRINTING SIMILARITY SEARCH

GENERATE IMAGES CNN FILTERING



NATURAL LANGUAGE PROCESSING: DATASET 
AND CODE

https://doi.org/10.26311/lit

https://bit.ly/2LJxRM7

Manual Extraction:
● Engaged Argonne CELS admin staff 

to extract small molecules from key 
SARS/SARS-CoV-2/MERS papers

● Extracted >800 molecules, structures

Automated Extraction:
● Labeled relevant small molecules in 

their natural language context in 
CORD-19 papers

● Built named deep-learning entity 
recognition (NER) models to extract 
drug references from entire corpus 
(>24k full text articles)

Code, training data: https://github.com/globus-labs/covid-nlp

Model on DLHub: https://bit.ly/2LJxRM7
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DEEPDRIVEMD: DL DRIVEN ADAPTIVE ENSEMBLES MD  

H. Ma, et al, ParCO, 2019
H. Ma, et al, Workshop on Deep Learning on Supercomputers, 
2019
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Collaboration with Shantenu Jha (Rutgers/ Brookhaven) and RADICAL team



• In situ analytics
• Reduced data 

movement and 
other overheads

• Online monitoring 
and feedback

DEEPDRIVEMD OVERVIEW: INTERLEAVE 
SIMULATIONS AND ANALYTICS ADAPTIVELY 
FOR REDUCING COMPUTING OVERHEADS 

Job scheduler

Simulation(s)

Data storage (Disks)

Analytics

Visualization

“Big iron”

Dedicated 
analytics 
clusters

Big Store

Traditional Compute + Simulations 

Unsustainable at Exascale
• Data movement bottlenecks
• Parallel analytics bottlenecks

Proposed Interleaving Analytics + Simulations

Job scheduler

Simulation(s)

Data storage (Disks)

Analytics

Visualization

“Big iron”

Iterative forward/backward loop 
• High performance framework to monitor & analyze 

simulations as they are running with little/ no modification to 
simulation software

• Demonstrate on protein folding, but generalize framework 
for broad applicability

● Generate ensemble of simulations in 
parallel as opposed to one realization of 
process

○ Statistical approach: O(106 - 108)!
● Ensemble methods necessary, not 

sufficient!
○ Adaptive Ensembles: Intermediate 

data, determines next stages

● Adaptivity: How, What
○ Internal data: Simulation generated 

data used to determine “optimal” 
adaptation



A VARIATIONAL APPROACH TO ENCODE PROTEIN 
FOLDING WITH CONVOLUTIONAL AUTO-ENCODERS 
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1. 64 filters, 3x3 window, 1x1 stride, RELU
2. 64 filters, 3x3 window, 1x1 stride, RELU
3. 64 filters, 3x3 window, 2x2 stride, RELU
4. 64 filters, 3x3 window, 1x1 stride, Sigmoid
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Related work: 
Hernandez 17 arXiv, 
Doerr 17 arXiv



DEEP CLUSTERING OF PROTEIN FOLDING 
SIMULATIONS
q Convolutional Variational Auto 

Encoders (CVAE) 
q Low dimensional representations of states 

from simulation trajectories.
q CVAE can transfer learned features to 

reveal novel states across simulations

q Integrating Bayesian learning to 
support uncertainty in sampling 
novel states
q HPC Challenge (1): DL approaches to 

achieve near real-time training & prediction!
q HPC Challenge (2): Hyperparameter 

optimization (while model is training)!

Bhowmik, D., et al, BMC Bioinformatics (2018). 



LARGER NUMBER OF SIMULATIONS IMPROVES
FOLDING EFFECTIVENESS (HENCE SAMPLING)

System Total no. of 
simulations

Total simulation 
time (us)

First, subsequent 
simulations

Iterations Min. RMSD

Fs-peptide 840 18.2 100, 10 7 0.29

BBA (FSD-EY) 1200 22.8 100, 10 10 1.8

VHP 1200 22.8 100, 10 10 3.83

RMSD=9-10 Å

8-9 Å

7-8 Å

6-7 Å

5-6 Å

4-5 Å

3-4 Å

2-3 Å

RMSD=10-12 Å

8-10 Å6-8 Å4-6 Å2-4 ÅVHP
Best

BBA
Best



ITERATIVE EXPLORATION OF STATES WITH DEEP 
LEARNING PROVIDES ACCESS TO FOLDED STATES

Training phase – no adaptive sampling
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• including the data from the 
“learning phase”: one order of 
magnitude improvement in sampling: 

• Distinct “cross-over” after training 
where sampling is accelerated 
significantly after learning/ 
estimating the conformational 
states VHP BBA

DEEPDRIVEMD SHOWS AT LEAST AN ORDER OF 
MAGNITUDE EFFICIENT SAMPLING COMPARED TO 
TRADITIONAL APPROACHES 

“cross-over” after training
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• not including the data from 
“learning phase”: At least two orders 
of magnitude improvement in sampling:

• If Anton trajectories take 
O(microsecond) to sample a 
particular state, DeepDriveMD
samples it in O(100 ns)

• For BBA, 98% sampled states are 
observed within 10 microseconds!  VHP BBA

Reference trajectories are from D.E. Shaw (Science, 2011)



USING FULLY CONVOLUTIONAL VAE TO IDENTIFY 
CONFORMATIONAL STATES IN SPIKE PROTEIN SIMULATIONS

§ Modification of the VAE architecture to 
accommodate larger systems (E.g. Spike 
protein – 1.5 million atoms)

§ Model parallel example: 
– encoder and decoder on individual 

GPUs
– implemented with Pytorch

§ Can improve performance with layer-wise 
adaptive rescaling 

§ Joint work with Alex Brace (Argonne intern), 
Abe Stern (NVIDIA), Anda Trifan (CSGF), 
Rommie Amaro (UCSD), Carlos Simmerling 
(Stony Brook University)

Total no. of parameters – 1.14 billion!

No. GPUs 
(V100)

Memory Time per batch (8)

1 20213/32510 MiB 7.561

2 9947/32510 MiB (Encoder)
12987/32510 MiB (Decoder)

7.481
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REINFORCEMENT 
LEARNING DRIVEN MD

§ Motivation: physics-based 
models are guided by an action 
space determined by AI

§ Can we expand the compound
space explored using RL?

§ For SARS-CoV-2 proteome:
– relevant for specific 

mutations compared to other 
CoV proteins

– suggest repurposing based 
on shape/structural 
complementarity 
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Physics-based Molecular Simulations

Existing 
structure repo

Model missing 
residues/ loops

Ligand builder 
(AmberTools)

OpenMM/ AMBER/ 
Gromacs Simulator

Ensemble 
Equilibrium 

MD

DeepDrive
MD

(Adaptive)

MCMC w/ 
MD 

simulations

Observables
State information
• coordinates
• trajectories 
• experimental data
• potential energy grids (voxels)
• 2D images (compounds)

Rewards/ Metrics information
• MM(G/P)BSA free energy
• Docking scores (Autodock

Vina, OpenEye Chemgauss)
• RMSD and other metrics

ML Policy/ Expert Optimization
RL-based optimization
• Q-learning
• Proximal policy learning/ optimization
• Actor-critic models

Active learning 
• Semi-supervised approaches 
• GANs and similar models

Expert (hand optimization) methods
• neural network scoring functions
• random action
• expert written approaches

Actions

• fragment growth, search
• fingerprint search
• reaction synthesis model



Fragment growth with an expert docking policy
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Joint work with A. Clyde, 
UChicago
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Action 
space

MMGBSA

Sampling



FUTURE WORK / OUTLOOK
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• Sampling remains challenging: are there techniques that can aid accurate biophysical characterization 
of protein conformational landscapes? 

• Deep learning / AI techniques show promise: are they learning biophysical characteristics that can be 
used to guide simulations? 

• Protein interactions need “context”: are there multi-scale methods to integrate information across 
experiments, simulations and theory? 

Conformational landscapes of proteins: 

• Improvement in additional AI/ML models
• Active learning approaches for docking ligands
• Runtime systems are unprepared for such use cases where AI/ML systems drive simulations :

• improving exchange of data with concurrently running models 
• tracking datasets as simulations are running (online/ in situ training) 

AI/ML coupled to simulations 
(challenges)



FUNDING AND ACKNOWLEDGEMENTS
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§ Everyone in the team (all ~300)
§ Computing support:

– ALCF, OLCF
– TACC, SDSC, IU
– HPC Consortium

§ Funding acknowledgement:
– DOE National Virtual Biotechnology 

Laboratory (NVBL)
– Argonne internal funding (LDRD)
– DOE Exascale computing project 

(Cancer Deep Learning Environment) 
Collaboration with Carlos Simmerling (Stony 
Brook University), Rommie Aamaro (UCSD)

Simulations driven by AI depict how the CoV-2 spike protein attaches to 
the human ACE2 receptor protein

Spike protein

ACE2 receptor



THANK YOU! 
(RAMANATHANA@ANL.GOV)
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