grog

ATPESC 2021 Reinventing Chips for AI

Dennis Abts

Groq Chief Architect & Fellow in Engineering dabts@groq.com .

J			-	-	•••	•••	J																															
																																		•	•	•	•	•
							•	•	•	•	•	•	•	•	•																	•	•	•	•	•	•	•
				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•											·	•	•	•	•	•	•	•	•
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	·	٠	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	٠	•	٠	٠	٠	٠	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	٠	٠	٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																																				1		

Agenda

Introduction

Architecture Overview, Dataflow, Compute

Impact

Scaling, Determinism, Batch 1 performance, TCO

Conclusions

Introducing Groq

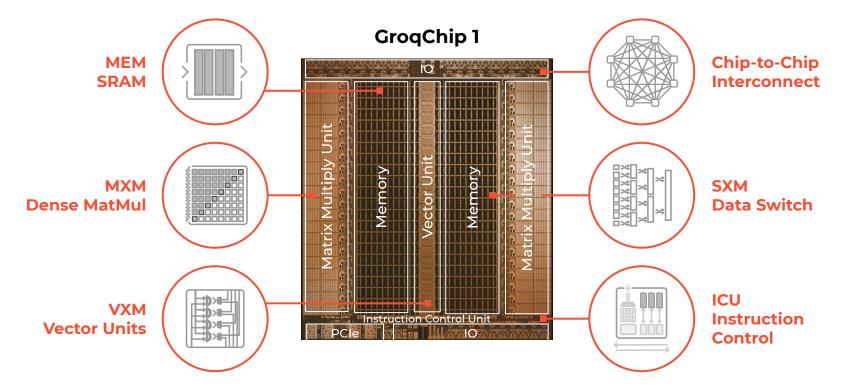
Efficiently accelerating AI/ML and converged HPC

- Founded: 2016
- Headquarters: Mountain View, CA
- Flagship Product: GroqChip[™] accelerator & Compiler for use in AI, Machine & Deep Learning, and converged HPC
- Availability: First generation chip shipping
- ML Systems at Groq: Implementation of ML models, optimization of ML models, & performance analysis of workloads on Groq hardware

	Δ		Y						1			П)																																										
 - 4										-				L.	×.																																										
	S	`+	- L		\sim	_	-				<u>, '</u>	-				N		Λ					-	2								V									()		1				1	_	<u>, 1</u>							
				- (<u>م</u> ۲		ľ		Ϋ́	ľ	C	-			\mathbf{P}	\bigvee		- (-	-		Ϋ́				ľ	Ν	/			\vdash							5	-		7	\mathbf{n}	/		Č.				-	•							
	\smile		-		\smile		~				Ľ.	~	<u>ר</u>	1		4		ł.		\sim	4		Ľ.		~	н		/	1	-			`	-	-		/	~	\sim	1	~	/				~		/	-	,							
																																																								-	
																																																								1	

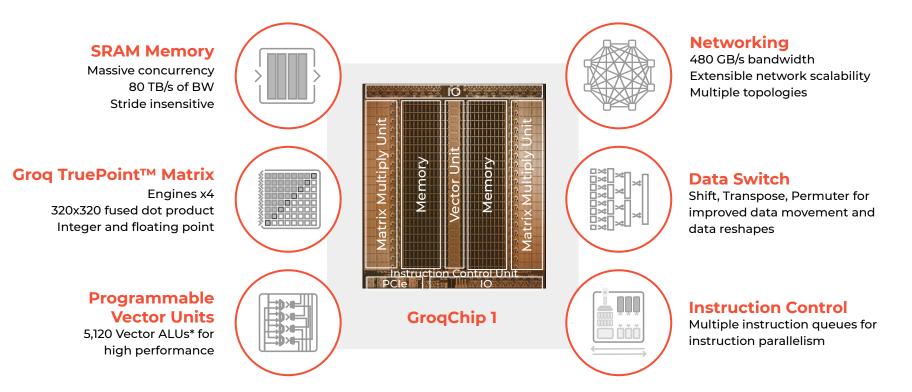
GroqChip™ at a Glance

Scalable Compute Architecture



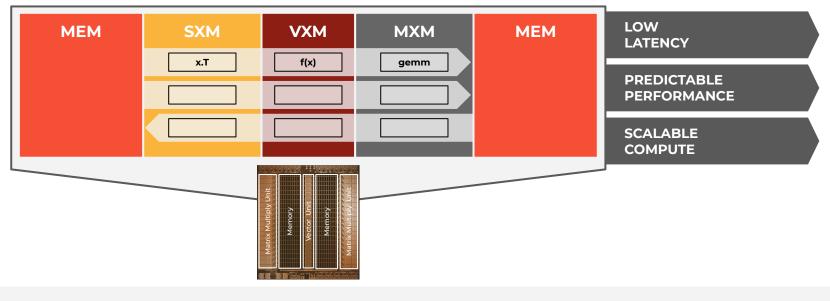
GroqChip1Overview

Scalable Compute Architecture



Tensor Streaming Dataflow

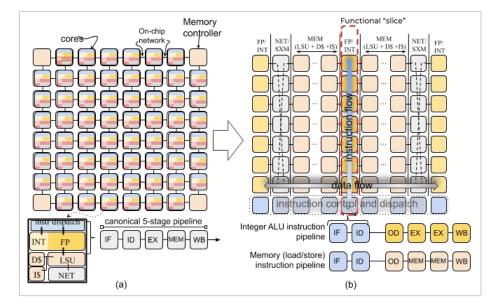
A simply efficient approach to compute architecture and data flow



Single core, spatial pipeline processing Simple tensor instruction set architecture

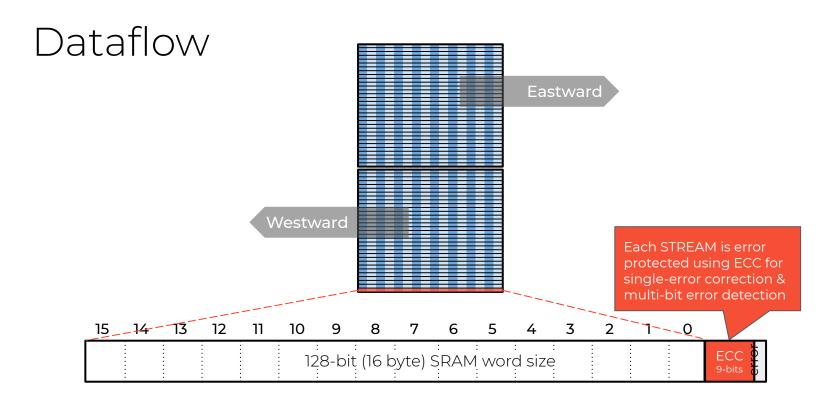
Stream programming of massive SIMD, concurrent streams Large on-chip memory bandwidth Deterministic, predictable performance scales to multi-chip

Disaggregated Compute & Control



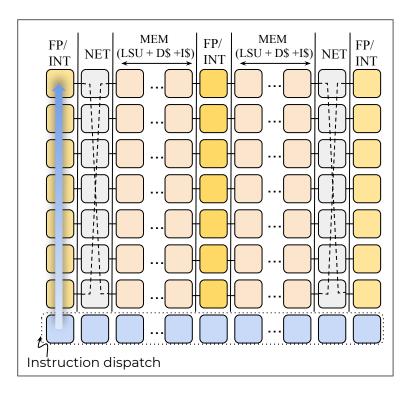
Disaggregates Functional Units	Processing elements arranged into "slices" Matrix, Vector, Switching (MXM, VXM, SXM) Exploit data and instruction parallelism Contrast to a many-core arch
Data-Level Parallelism	Instructions operate on 320 byte SIMD tensor while streaming

Instruction Level Up to 144-way from slices Parallelism (ILP)



Streams composed of "superlanes" (one "row of the stream) 20 superlanes: Form a max vector length of 20x16=320 elements Streams provide interface similar to a load/store architecture All memory read/writes are produce/consumed to/from the streams

Compute



Executed in a SIMD manner

Same instruction executed on all 20 superlanes Staggered in time

Instructions flow vertically

One superlane per cycle 20 cycles to operate on a vector

Compute, Memory, & IO

Compute

Matmult TOPs: INT8

Hemispheres * Planes/Hemisphere * (2*VL + 1) * MXM width * clock

2 * 2 * (2*320 + 1) * 320 * fclk

= 1024 TOps

(1 Peta Op per Second @1.25GHz)

Memory

Memory = Slices/hemisphere * Hemispheres * Addresses/Bank * Banks/slice * Bytes/address

44*2*4096*2*320 = 220MB

Memory-Compute Units BW

BW = Number of streams in parallel in both directions * Bytes/stream * Clock * hemispheres * Computation units

= 64 * 320 *900 MHz * 2 * 2 = 80TB/s

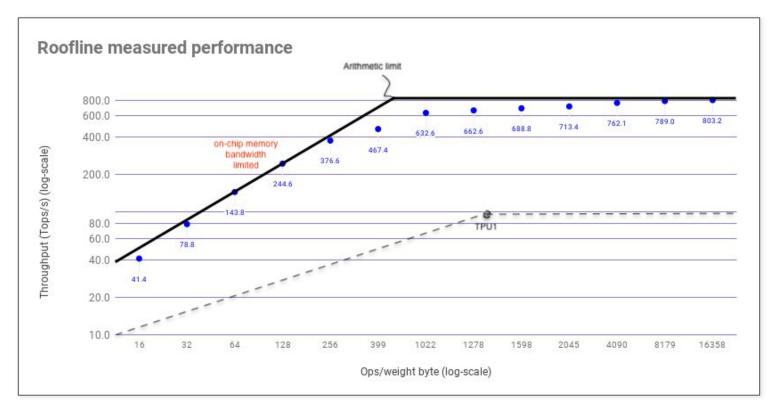
IO BW

PCI Gen 4: x16: 32GB/s

C2C BW

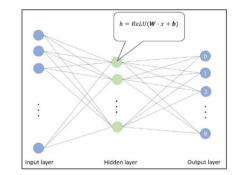
16 x4 links @ 30Gb/s x 2 (bidi) = 3.84 Tb/s =480 GB/s of total off chip BW

Roofline



VXM Chain Example

Simple Dense Layer with Activation

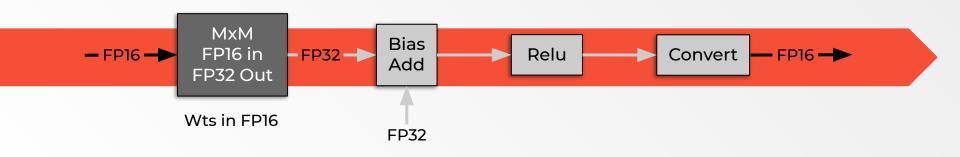


Would like to keep data in flight as long as possible without store to memory

MatMul returns partial products Final accumulation done in the SXM or VXM

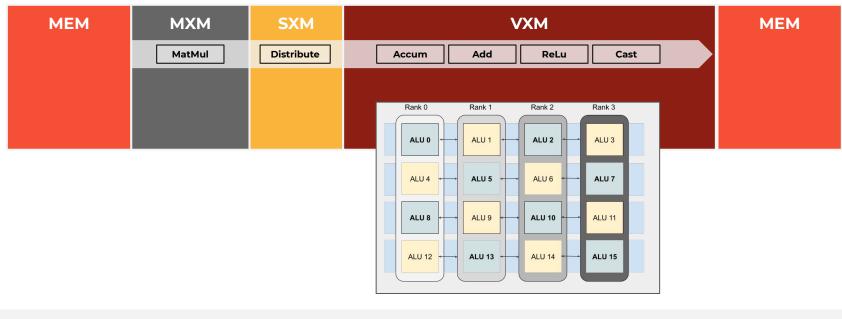
Continue chaining element-wise operations inside the VXM

Bias-Add, Relu, Re-Quantize can all be chained in the VXM



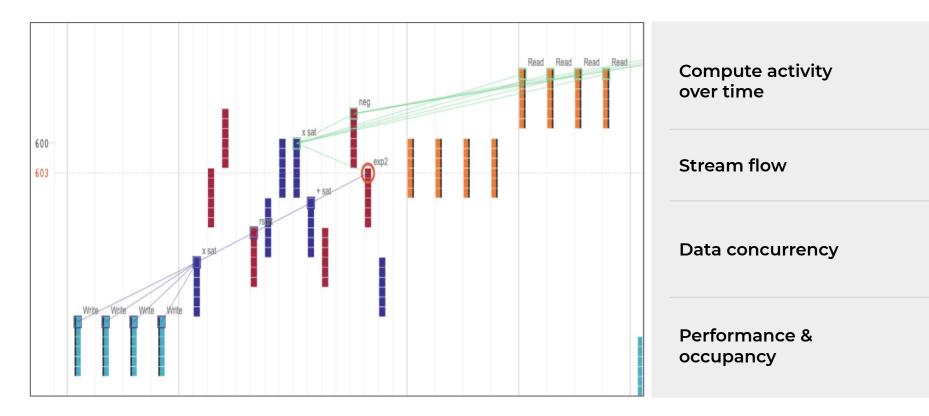
A Tensor Streaming Architecture

VXM Chaining for a Dense Linear Layer with Bias Add, Relu, and Quantize



Dataflow begins with memory Read onto Stream Tensor Many concurrent streams are supported in programming model VXM provides a flexible and programmable fabric for Compute Compute occurs on data locality of passing Stream Tensor MEM bandwidth supports high concurrency

Visualizing Program "Schedule" on the Chip



Software Development at Groq

Compiler

Front-end optimization, vectorizing rewrites, and scheduling. Model parallel compilation flows and model segmentation

Assembler

Binary program generation and hardware abstractions

DNN Library

DNN llbrary development and packages using direct-to-architecture programming interface

Data Scientist

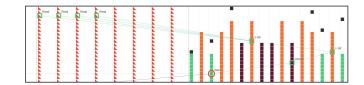
ML exploration and algorithmic mapping onto GroqChip™ using Groq SDK and Tools

Tools

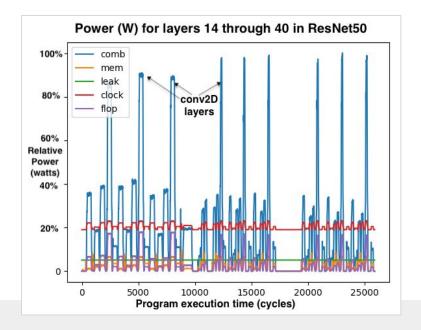
Visualization, user reports, and virtualization

onnx/**onnx-mlir**

Representation and Reference Lowering of ONNX Models in MLIR Compiler Infrastructure



Compiler: Fine Grained Control

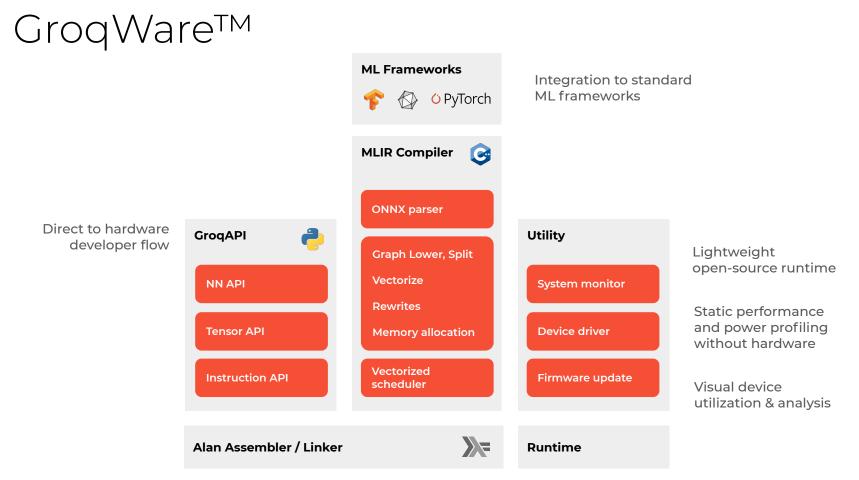


Compiler

Schedules functional units by controlling each instruction queue in the ICUs Compiler inserts instruction prefetching instructions Keep all 144 instruction queues fed A functional slice never stalls to fetch more instructions.

Compiler can trade-off latency & throughput for power savings

Add NOPs to "throttle" performance Do it on a per functional unit basis Measure performance at compile-time.



Groq Delivers Greater Integration

Scalable compute architecture

Cards Scale to Nodes Node contains 8 Cards

Nodes enabled for C2C compilation deliver more per-card value than single cards.

Nodes Scale to Racks GrogRack: 8 Compute Nodes + 1 Redundant Node

Racks deliver more per-node value than single nodes, & four racks deliver still more than one.

aroa

<u>aroa</u>

Groc

grog

grog

grog

aroa

IMPACT Deterministic Execution, Batch Size 1, TCO, & Scalable Systems

Determinism

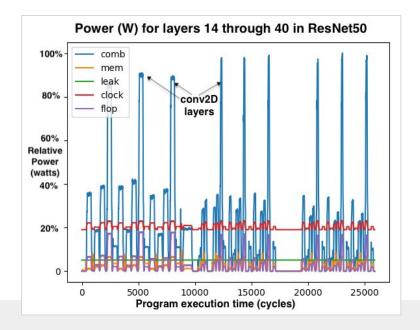
Dataflow Model + Functional Units Ensures Determinism

Built from the ground up

Model Latency Accurate Down to a Clock Cycle No arbiters, caches, prediction



Importance of Determinism & Batch Size 1



Fine Grained Control of Power & Performance

At compile time

Easy to reason about chip performance

High Performance at Batch Size 1

Existing accelerators need large batch sizes to parallelize and achieve high throughput

High stream bandwidth to/from on chip memory allows high batch size 1 performance

Performance throughput and latency is independent of batch size

High Batch Size 1 performance reduces TCO for diverse SLAs

Conclusions

GroqChip[™] 1

Deterministic HW architecture built from ground up Fine grained SW control

Determinism & Streaming Are Key to Architectural Benefits

Extract maximum parallelism from mode through data/instruction level parallelism Fine grained power, performance control at compile time Scalability

Batch Size 1 Performance Matters

Real-time (batch 1) applications put heavy strain on a datacenter deployment Batch size 1 lowers TCO

Questions?

For more information on Groq technology and products, contact us at

info@groq.com

Follow us on Twitter

 \checkmark

@GroqInc

Connect with us on LinkedIn

https://www.linkedin.com/ company/grog

GCOC[™] © 2021 Groq, Inc. ATPESC 2021

