

INTERCONNECTS ATPESC 2021

Eric Borch & Igor Gorodetsky

August 2, 2021

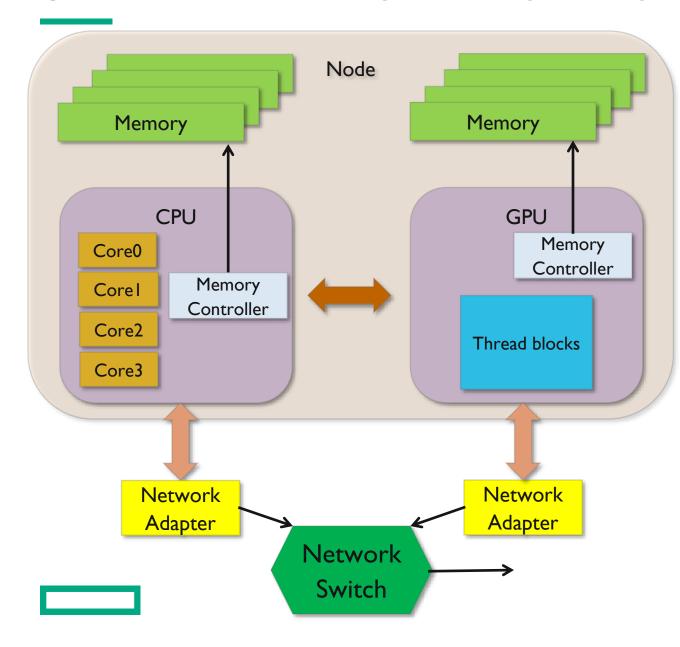
US DOE SYSTEM ARCHITECTURE TARGETS

System attributes	2010	2018-2019		2021-2022	
System peak	2 Peta	150-200 Petaflop/sec		1 Exaflop/sec	
System memory	0.3 PB	5 PB		32-64 PB	
Node performance	125 GF	3 TF	30 TF	10 TF	100 TF
Node memory BW	25 GB/s	0.1TB/sec	1 TB/sec	0.4TB/sec	4 TB/sec
Node concurrency	12	O(100)	O(1,000)	O(1,000)	O(10,000)
System size (nodes)	18,700	50,000	5,000	100,000	10,000
Total Node Interconnect BW	1.5 GB/s	20 GB/sec		200GB/sec	
MTTI	days	O(1day)		O(1 day)	

Past production

Current generation (e.g., CORAL)

Exascale Goals


[From DOE Exascale report]

GENERAL TRENDS IN SYSTEM ARCHITECTURE

- Core clock frequency is not increasing
- Number of threads on a core is increasing
- Number of cores on a node is increasing
- Number of nodes is increasing
- Accelerators gain prominence
 - Lead to hybrid nodes
- What does this mean for networks?
 - More sharing of the network interconnect
 - The aggregate amount of communication from each node will increase moderately –More smaller messages
 - A single CPU core may not be able fully saturate the NIC
 - Accelerators must be able to participate in communication

SIMPLIFIED NETWORK ARCHITECTURE

- Complex nodes combining CPUs and GPUs
- Network communication requires coordination between them
- Important to use "close" network adapter, if possible
- Several I/O technologies exist
 - PCle, NVLink, xGMI
 - Expected to provide higher bandwidth than what network links will have

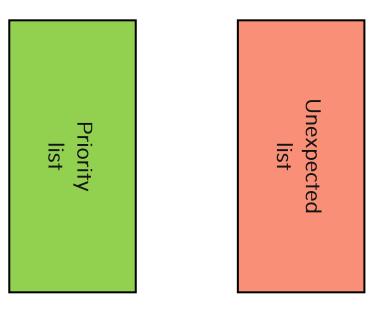
NETWORK ADAPTERS

NETWORK ADAPTER TRENDS

- Increasing complexity is motivated by diverse workloads
 - AI/ML, Realtime data streaming, traditional HPC application
- CXL (Compute Express Link) is getting traction among CPU/GPU vendors
 - CXL.io is equal to PCle
 - CXL.cache good for offloading atomics
 - CXL.mem great potential for network-attached storage
- Data encryption is driven by increased demand for handling sensitive data
- Resource virtualization helps to improve system utilization while protecting users
- Increased degree of hardware programmability helps to optimize for diverse offloads
 - Datatypes aware transactions
 - Access control list (ACL)
 - Tunnelling RDMA and IP protocols

OFFLOADING TECHNIQUES AND CHALLENGES

- MPI tag matching offload helps to achieve a high message rate
 - Large number of posted receives or unexpected messages lead to performance degradation
- Triggered operations can be used by GPU to issue transactions staged by CPU
 - Works well for static communication patters as CPU needs to pre-program transactions
- Counting events speeds up completion notifications and simplifies their processing
 - Best for batch message processing with a few distinct tags
- Memory address translation and on-demand paging (ODP) reduces the memory footprint of an application
 - Not pinning pages is great, but the high volume of ODP may lead to performance degradation
- Datatypes handling by the network adapter avoids data copying in software
 - Usually, requires pre-programming. A high number of distinct types may increase latency.

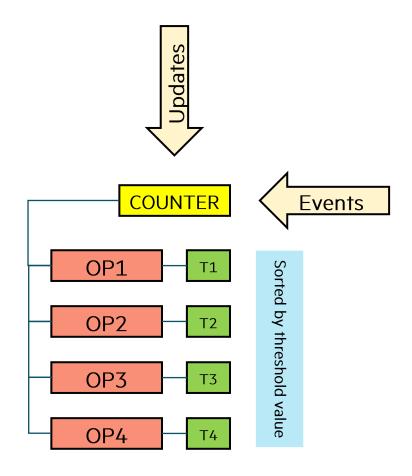


MPI TAG MATCHING

- Pool of list entries can be very large, but the number of entries held withing the adapter is always limited. Fetching additional entries might be expensive.
- Pre-posting too many receive buffers increases network latency as it takes longer to match incoming messages.
- Long unexpected list drains pool of list entries and slows down append

MPI_Recv

- 1. Match on Unexpected
- 2. Append to Priority



MPI_Send from peer

- 1. Match on Priority
- 2. Append to Unexpected

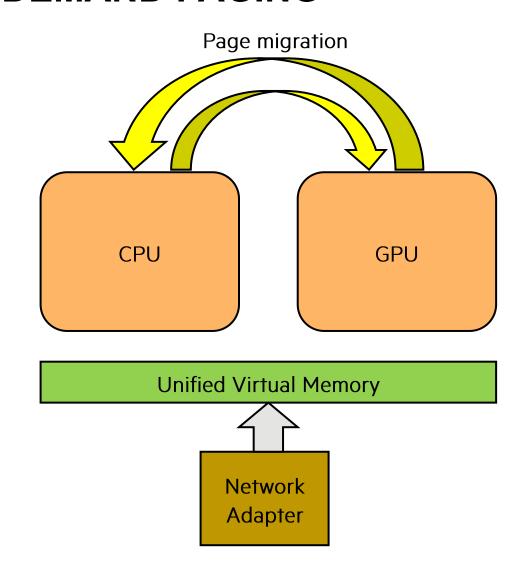
TRIGGERED OPERATIONS

- Transactions attached to a counter
- Each transaction configured with a threshold value
- Counter is incremented by a completion event or explicit updates by software
- Transaction is triggered when the counter is equal to its threshold value

COUNTING

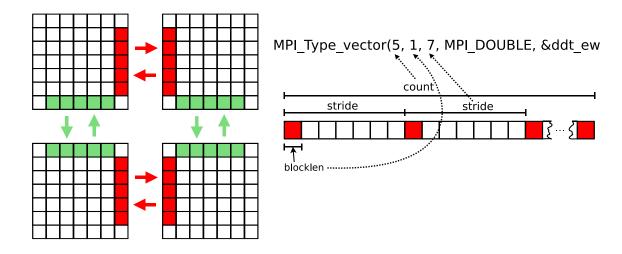
VS.

- Counter gets incremented when the desired event occurs.
- Each instance includes Success and Error counters. If an error occurs, full event is delivered to assist with the error handling.
- Counter updates can be pushed into a host memory by the adapter. Updating the host memory on every increment or at thresholds.
- Works well when process is waiting for N
 messages to complete before proceeding to
 the next step.


FULL EVENTS

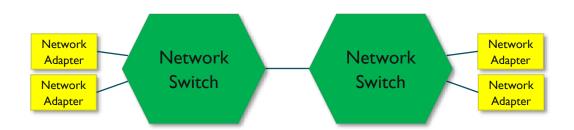
- Full event is delivered at the end of every transaction and to notify of an error.
- Provides information about initiator and target. Maps better to MPI Send/Recv semantics.
- Allows handling truncated transactions as the event provides both requested and delivered length.

ADDRESS TRANSLATION AND ON-DEMAND PAGING


- A virtual address in the Unified Virtual Memory space is used in transactions.
- Network Adapter deploys PCIe Address
 Translation Service (ATS) to obtain and cache translated addresses.
- If physical memory is not present, the adapter can use Page Request Interface (PRI) to trigger On-Demand Paging (ODP).
- ODP may bring page from another device (e.g., GPU) or allocate a new page.

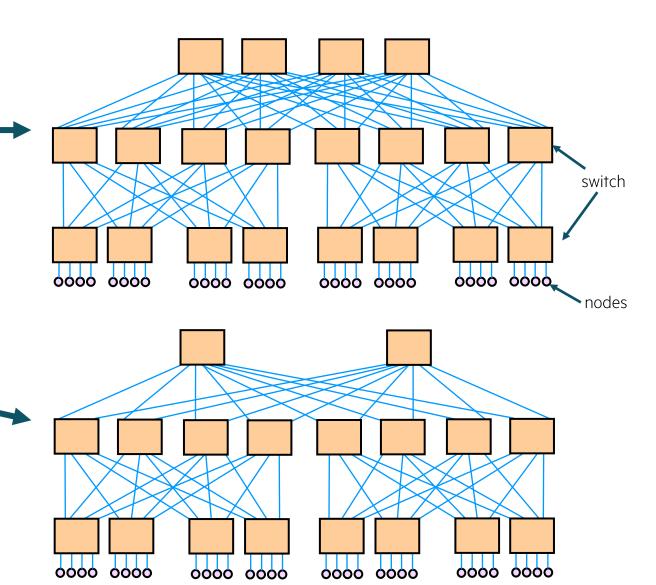
DATATYPES

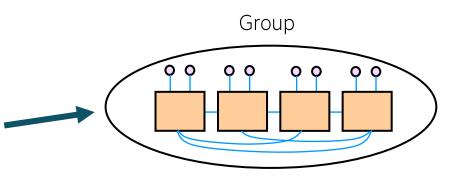
- IOVEC is the best-known datatype, when data is described by a series of memory regions.
- MPI can express datatypes providing the software a way to execute transactions without copying data to a contiguous buffer.
- Offloading handling of derived datatypes to hardware allows the user to specify precisely which memory locations are involved in a Send or Receive and have that data be packed into a single, more efficient message.

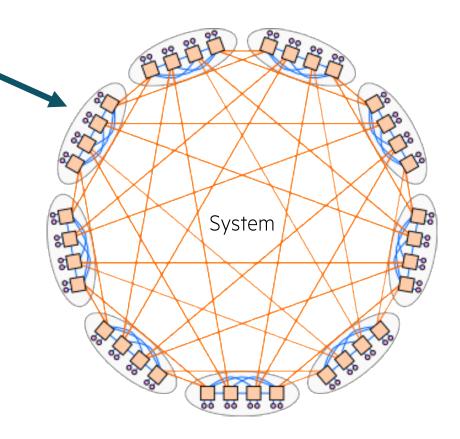

Reference: spcl.inf.ethz.ch

INTERCONNECT / TOPOLOGIES

NETWORK TOPOLOGIES

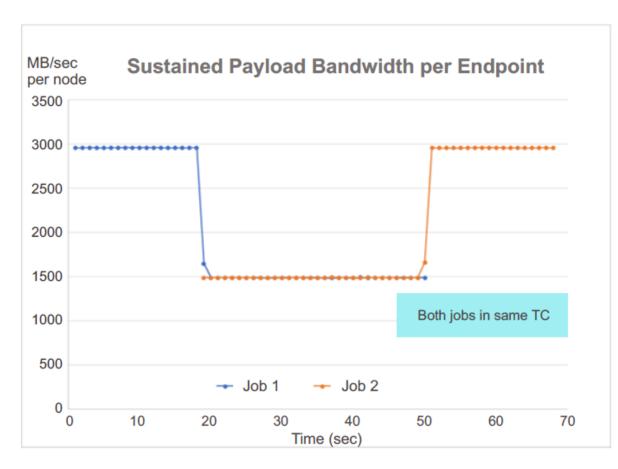

- The topology describes how switches and endpoints in a network connect to each other
- Ideal topology would be all-to-all connectivity
 - Single switch
 - Reality limits switch to ~64 ports
- Fabric hop count is the number of switch-to-switch links traversed by a packet
 - Distance between nodes
 - As node count grows, fabric hop count grows
- We need topologies able to connect hundreds, thousands, tens of thousands, hundreds of thousands of nodes
- Minimize hop count (while maintaining performance)
 - Every time a packet takes a hop
 - It consumes fabric resources (bandwidth, buffering, power)
 - It increases the probability of interference or congestion
 - Fewer hops means lower fabric cost
 - Less switches and cables required
 - More money to spend on compute

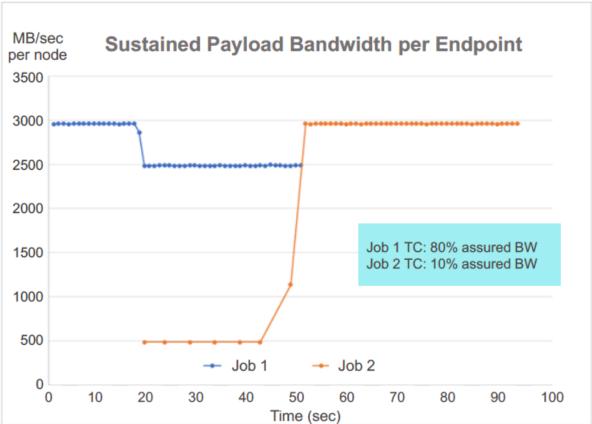

FAT-TREE TOPOLOGY


- Common topology for current systems (Sierra & Summit)
 - 3 Levels, maximum fabric hop count of 4
- Fully configured fat-tree (Summit)
 - Tree with equal bandwidth at each level
 - Non blocking between all pairs of nodes
 - Doesn't always happen in practice
 - Over provisioned bandwidth
 - Performance is quite good
 - Large percentage of fabric cables are optical
 - Can get expensive at scale
- Bandwidth tapered fat-tree
 - Unequal bandwidth at each level
 - No longer non-blocking between all pairs of nodes
 - Reduces number of cables (optical) and routers
- The number of cables and routers increases super-linearly with node count
- Scheduling a job across nodes to minimize fabric hops between hosts maximizes performance

DRAGONFLY TOPOLOGY

- Every router has nodes connected
- A group contains routers that are all to all connected (1-D Dragonfly)
- All groups in the system are all to all connected.
- Aurora, Frontier, El Capitan will use a 1-D Dragonfly
- Primarily driven by network cost as system scale grows
 - Linear increase in the number of cables and routers with system size
 - Less than 33% of fabric cables are optical
 - Scales to 4x number of nodes as 3 level fat-tree
 - Maximum hop count of 3
- Requires sophisticated adaptive routing
- Job scheduling
 - Intra-group if job can fit in a single group (256-512 nodes/group)
 - Randomly across system if job is larger than a single group
 - Bandwidth between individual group pairs is low compared to node injection bandwidth into group (and total bandwidth out of group)


INTERCONNECT FEATURES THAT IMPROVE PERFORMANCE*

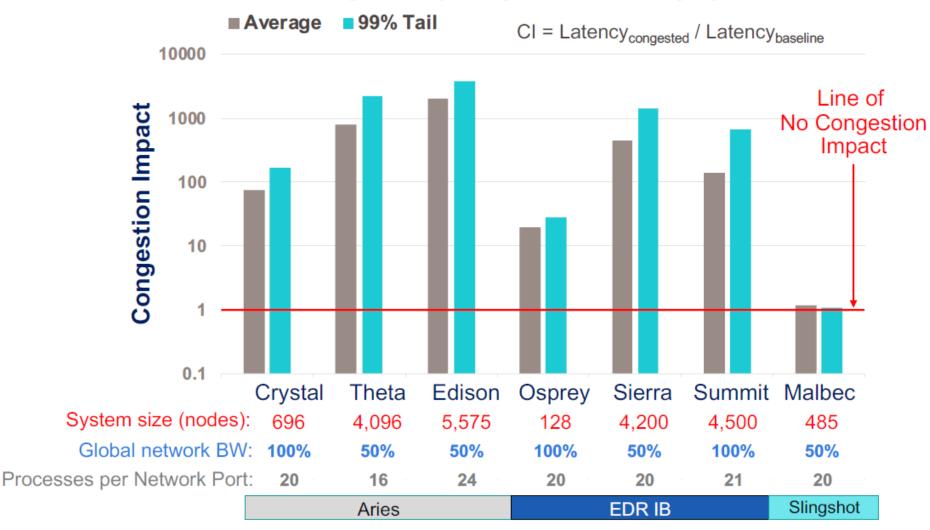

- Adaptive Routing
 - Per packet used to choose where a packet goes
 - Targets topological based congestion (unrelated flows crossing in the network)
 - Used to route around temporal hot spots in the network
 - Used sparingly, routing via a longer path can reduce latency
 - Used excessively, routing via a longer path can increase latency and decrease bandwidth
- Quality of Service classes
 - Part of arbitration used to choose which packet to advance
 - Tunable classes may use priority, min & max bandwidth allocation, routing biases, etc.
 - Example classes: low latency, standard compute, bulk data, scavenger
 - Job can use multiple classes
 - Provides performance isolation for different classes of traffic
- Congestion management
 - Targets workload-based congestion (incast, many to few)
 - Identifies and controls causes of congestion
 - Throttles sources to prevent excess traffic from entering the network
 - Prevents highly filled buffers, congestion, contention
 - Applications much less vulnerable to other traffic on the network
 - Predictable runtimes
 - Lower mean and tail latency a big benefit in applications with global synchronization


SIMPLE QUALITY OF SERVICE CLASS DEMO

- Two interleaved 64-node bisection bandwidth jobs
- 128-node Slingshot/Rosetta system, tapered to 3.125 GB/s/node peak bisection bandwidth

CONGESTION MANAGEMENT PROVIDES PERFORMANCE ISOLATION

Job Interference in today's networks


Congesting (green)
traffic hurts wellbehaved (blue) traffic,
and really hurts
latency sensitive,
synchronized (red)
traffic.

With Slingshot Congestion Management

CONGESTION IMPACT IN REAL SYSTEMS

Random Ring Latency Congestion Impact by System

- Impact worsens with scale and taper
- Infiniband does somewhat better than Aries
- Slingshot does really well

© 2019 Cray Inc.

THANK YOU

Eric.Borch@hpe.com Igor.Gorodetsky@hpe.com