ATPESC 2021 August 8, 2021

SW/HW Innovations in Emerging DL Training Systems

Urmish Thakker Principal Engineer

Goldilocks Zone

Too Hot

Trend of SOTA Models

TinyBERT: Distilling BERT for Natural Language Understanding

Xiaoqi Jiao^{1*†} Yichun Yin^{2*‡} Lifeng Shang^{2‡}, Xin Jiang² Xiao Chen², Linlin Li³, Fang Wang^{1‡} and Qun Liu² ¹Key Laboratory of Information Storage System, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics ²Huawei Noah's Ark Lab

{yin
{che} DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter

Victor SANH, Lysandre DEBUT, Julien CHAUMOND, Thomas WOLF Hugging Face {victor,lysandre,julien,thomas}@huggingface.co

Bigger Models

160

180

140

Our Mission

Shaping the next-generation ML / DL computing system to accelerate the full model spectrum

How do we break out of the Godilocks Zone?

Fundamental advances required at all layers of the SW/HW stack.

The SambaNova Systems Advantage

Application innovations

High model accuracy

High compute efficiency

Part 1.

Enabling higher compute efficiency

©2021 SambaNova Systems

Architecture: Reconfigurable Dataflow Unit (RDU)

Spatial Dataflow Within an RDU

The old way: kernel-by-kernel

SambaFlow eliminates overhead and maximizes utilization

Rapid Dataflow Compilation to RDU

©2021 SambaNova Systems

SambaFlow Produces Highly Optimized Spatial Mappings

Uncompromised Programmability and Efficiency Breaking out of the programmability vs. efficiency tradeoff curve

The SambaNova Systems Advantage

Achieve low time-to-accuracy

High model accuracy

Part 2. High model accuracy:

+ Pure 16-bit FPU training + Asynchronous pipeline parallelization

©2021 SambaNova Systems

Low Precision (< 32-bit) Training

Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to +1 or -1

Matthieu Courbariaux*¹ Itay Hubara*² Daniel Soudry³ Ran El-Yaniv² Yoshua Bengio^{1,4} ¹Université de Montréal ²Technion - Israel Institute of Technology ³Columbia University ⁴CIFAR Senior Fellow *Indicates equal contribution. Ordering determined by coin flip. MATTHIEU.COURBARIAUX @ GMAIL.COM ITAYHUBARA @ GMAIL.COM DANIEL.SOUDRY @ GMAIL.COM RANI@ CS.TECHNION.AC.IL YOSHUA.UMONTREAL @ GMAIL.COM

Recurrent Neural Networks With Limited Numerical Precision

Joachim Ott*, Zhouhan Lin[‡], Ying Zhang[‡], Shih-Chii Liu*, Yoshua Bengio^{‡†} *Institute of Neuroinformatics, University of Zurich and ETH Zurich ottj@ethz.ch, shih@ini.ethz.ch [‡]Département d'informatique et de recherche opérationnelle, Université de Montréal [†]CIFAR Senior Fellow {zhouhan.lin, ying.zhang}@umontreal.ca

Training Deep Neural Networks with 8-bit Floating Point Numbers

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen and Kailash Gopalakrishnan IBM T. J. Watson Research Center Yorktown Heights, NY 10598, USA {nwang, choij, danbrand, cchen, kailash}@us.ibm.com

Higher system efficiency, minimal impact on acc. for specific models

Efficiency of Low Precision Floating-point-units (16 vs. 32-bit)

1.5X lower chip area

3X higher energy efficiency

1.5X higher throughput

1. Horowitz. ISSCC 2014

2. Galal et. al. ISCA 2013

Mixed Precision for Generic DL Training (16 + 32 bits FPU)

NVIDIA / apex lines 52.5k		O PyTorch
A PyTorch Extension: Tools for easy mixed precision		Table of Contents
述 BSD-3-Clause License ☆ 4.7k stars 양 632 forks	$\equiv \uparrow$ TensorFlow	
	TensorFlow Core	AUTOMATIC MIXED PRECISION PACKAGE - TORCH.CUDA.AMP
	TensorFlow > Learn > TensorFlow Core > Gui	de

Mixed precision

Illusion: 16-bit FPU alone is not enough to maximize model acc.

Can we support only 16-bit FPU on accelerators

&

achieve model acc. matching 32-bit training?

©2021 SambaNova Systems

Pure 16-bit (BFloat16) FPU Training

The Accuracy Challenge

Standard 16-bit FPU training degrades model accuracy

The Devil: Nearest Rounding(NR) for Model Weight Updates

Rounding

Update

The Devil: Nearest Rounding (NR) for Model Weight Updates

Theory sketch for least-squares regression

$$\|\boldsymbol{w}_{t} - \boldsymbol{w}^{*}\| \geq \mathcal{O}\left(\boldsymbol{\epsilon} \cdot \min_{j} |\boldsymbol{w}_{j}^{*}|\right)$$
Optimal solution j-th dim of the optimal solution

Inaccurate weight update fundamentally degrades convergence

Stochastic Rounding to the Rescue

Intuition

The expectation of unbiased estimates is as accurate as weights w/o rounding

Kahan Summation as Alternative Enhancement

Auxiliary 16-bit values to track and correct weight update errors from NR

Pure 16-bit training can match 32-bit training in model acc.

Summary

With support for

Accelerators with only 16-bit compute units can match acc. of 32-bit training

Model (Pipeline) Parallelism

Synchronization barrier

How much utilization do we really need to sacrifice?

Async. Pipeline Parallelism Steady State

Goal: No hardware sacrifices!

Async. Pipeline Parallelism Steady State

 M_6 uses $W_{1,0}$ for forward and $W_{1,5}$ for backward: delay = 5 M_6 uses $W_{3,4}$ for forward and $W_{3,5}$ for backward: delay = 1

Panic: Introduces different asynchrony (delays) at different stages.

Houston, we have a problem.

Key Insight: Scale your learning rate proportional to the delay.

Chris De Sa

Maximize efficiency with no accuracy compromise

PipeMare: MLSys '20

The SambaNova Systems Advantage

Application innovations

Part 3. Model Innovations:

Powered by our architecture and algorithm

©2021 SambaNova Systems

Computer Vison Evolution of high-resolution Deep Learning

Low-resolution (e.g. cats)

4k images (e.g. Autonomous driving)

50k x 50k (e.g. astronomy, medical imaging, virus, ...

No Compromise High-Res Segmentation

Training w/o information loss from full-image processing

High-Res Pathology with Slide-level Label (TCGA)

Train with Patch label = slide label

Noisy patches limits model accuracy

High-Res Pathology with Slide-level label (TCGA)

16X larger patches \rightarrow 6 Pt higher AUC

Recommender Models

The backbone of many internet services

Recommender systems

Key common component: Sparse embedding feature

Recommender systems

More embedding features, more accuracy

State-of-the-art accuracy on DLRM

Faster Step-to-accuracy

0.8 0.795 0.79 1 RDU (batch size 3k, emb dim 1024) 8 GPUs (batch size 32k, emb dim 128)

40

50

% epoch

ML Perf threshold

60

70

80

90

100

World Record DLRM Training Accuracy

0.805

0.785

0.78 0

10

20

30

Bigger isn't always better...but it is sometimes.

Training Performance

r5d.metal (CPU, FP32)

SambaNova scales to training massive recommender models

Natural Language Processing

Breakthrough efficiency in NLP model online deployment

Distilled tiny Bert model

Short sequence input

Enable up to 11X speedup for online training and inference

Pretraining and Finetuning

©2021 SambaNova Systems

Domain Adaptation

Scaling Laws for Neural Language Models

Application accuracy improves as the size of the language model increases

Pretraining and Finetuning

©2021 SambaNova Systems

GPT Family

Will start training next month

©2021 SambaNova Systems

@SambaNovaAI

sambanova-systems

sambanova.ai

