

Survey of Storage Systems

ATPESC 2021

Phil Carns Mathematics and Computer Science Division Argonne National Laboratory

Thank you to Rob Ross, Kevin Harms, Glenn Lockwood, Sarp Oral, and Jim Ahrens for the background material used throughout this presentation.

August 6, 2021

exascaleproject.org

A generalized view of storage at a DOE compute facility

Example in practice: ALCF Theta

Example in practice: NERSC Cori (NERSC-8)

Example in practice: OLCF Summit

Current Platforms

		ALCI	NERSC Cori				OLCF Summit					
	Archive	Center	Platform	Embedded	Archive	Center	Platform	Embedded	Archive	Center	Platform	Embedded
SW	HPSS	Lustre	Lustre	ext3	HPSS	GPFS	Lustre	DataWarp	HPSS	GPFS	N/A	XFS
HW	LTO8 Tape/ HDD	SSD/HDD	HDD	SSD	3592 Tape/ HDD	HDD	HDD	SSD	3592 D Tape/ HDD	HDD		SSD
Capacity	305 PB	200 PB	10 PB	549 TB	230 PB	128 PB	30 PB	1.8 PB	130 PB	250 PB		7.3 PB
BW	90 GB/s (cache)	650 GB/s	240 GB/s	6.6-9.2 TB/s	100 GB/s (cache)	100 GB/s	700 GB/s	1.7 TB/s	120 GB/sec (cache)	2.2-2.5 TB/s		9.7-27 TB/s
Usability	Medium	High (POSIX)	High (POSIX)	Low (per-node)	Medium (hsi, htar, ftp, globus)	High (POSIX)	High (POSIX)	Medium (POSIXy)	Medium (his, htar, globus)	High (POSIX)		Low (per- node)

Note: No effort has been taken to try to uniformly measure BW or IOPS; consider these as estimates.

Projected deployment: ALCF Aurora

Platform storage shifts from a POSIX FS to DAOS. DAOS includes a POSIX compatibility layer but is likely to perform better when treated as an object or key/value store.

220 PB capacity, PM/NVME based 25+ TB/sec DAOS (non-POSIX)

Projected deployment: NERSC Perlmutter (NERSC-9)

Upcoming Platforms

	ALCF Aurora				N	IERSC P	erlmutte	r	OLCF Frontier				
	Archive	Center	Platform	Embedded	Archive	Center	Platform	Embedded	Archive	Center	Platform	Embedded	
SW	HPSS	Lustre	DAOS	N/A	HPSS	GPFS	Lustre	N/A	TBD	Lustre	N/A	XFS	
HW	LTO8 Tape/ HDD	SSD/HDD	PM/ NVME		3592 Tape/ HDD	HDD	NVME			SSD/HDD		TBD	
Capacity	305 PB	200 PB	220 PB		230 PB	200 PB	35 PB			700 PB		TBD	
BW	90 GB/s (cache)	650 GB/s	25+ TB/s		100 GB/s (disk)	500 GB/s	5 TB/s			10 TB/s		TBD	
Usability	Medium	High (POSIX)	? (non- POSIX)		Medium (hsi, ftp, globus)	High (POSIX)	High (POSIX)			High (POSIX)		Low (per-node POSIX)	

Note: These systems haven't been deployed, so configurations may change.

Existing DOE HPC I/O software is being updated for use on projected platforms

I/O Libraries

- ADIOS
- HDF5 (ExalO)
- Parallel NetCDF
- MPI-IO

Checkpoint/Restart

- SCR
- VeloC
- UnifyFS

Understanding

– Darshan

Compression

- SZ
- ZFP

Performance optimization in progress. POSIX API usage will continue with internal APIs to support new back-ends.

These teams have already been working with local storage and hierarchies for some time – adapting to new layers is relatively easy.

Darshan team is developing new modules to capture information from emerging storage platforms.

Compression algorithms are largely orthogonal to storage hardware technology; ongoing work is focused on making it more accessible.

Thank you!

exascaleproject.org