ExalO HDF5 features and application use cases

Suren Byna
Lawrence Berkeley National Laboratory

ATPESC 2021- Aug 6th, 2021

S —
) T —(C P e
LGNS The HDF Group = O'wmomiiiomon *'

ExalO - Many Team Members and Contributors

« LBNL: Quincey Koziol, Houjun Tang, Tony Li, Bin Dong, Alex Sim, Junmin Gu
« ANL: Venkat Vishwanath, Huihuo Zheng, Rick Zamora, Paul Coffman

« The HDF Group: Scot Breitenfeld, Elena Pourmal, John Mainzer, Richard
Warren, Dana Robinson, Neil Fortner, Jerome Soumagne, Jordan
Henderson, Neelam Bagha

« North Carolina State University: John Ravi, Michela Becchi

L= =\
rL/l Argonne‘) ’ _\(\w \) -

EEEEEEEE
CCCCCCCCC
PPPPPPP

Overview

» Features
« HDF5 Virtual Object Layer (VOL) Introduction
« ECP VOL Connectors

« Asynchronous I/0
* Node-local Caching

 Subfiling and querying

« ECP HDF5 Applications and benchmarks
« EQSIM
 AMReX - Nyx and Castro

« Chombo-IO
 h5bench

rL/1 Argon ne‘) 3 — \(\w

PPPPPPP

[

HDF5 Virtual Object Layer (VOL)

- VOL Framework is an abstraction layer within HDF5 Library
« Redirects I/O operations into VOL “connector”, immediately after an
API routine is invoked
« Non-1/0O operations handled with library “infrastructure”

« VOL Connectors

* Implement storage for HDF5 objects, and “methods” on those objects
« Dataset create, write / read selection, query metadata, close, ...

« Can be transparently invoked from a dynamically loaded library, without

modifying application source code
» Or even rebuilding the app binary

= S T
G The HDF Group Argonne = \(

PPPPPPP

VOL: High-Level Overview

Application

v

HDF5 API

U Operations on a container All other
. HDF5
/ [S \ .
I S ! routines
| © !
. {5
Virtual ¢/ R
Object = § |
Layer ¢l ~ HDF5 Library
VOL) Sl E |2l al5] &0 Infrastructure
£ T | < L] E| g
o =2) o <
[t
; A A 4
k = 4. >
. [— =
ol S N e (R e R
S e HoF Group ATERINE \(y s

Virtual Object Layer (VOL) Connectors

* Implement callbacks for HDF5 data model operations

« “Terminates” call by performing action directly, or “passes operation
through” by invoking VOL API connector interface:

« Pass-through - can be stacked, must eventually have terminal connector
« Examples:

» Provenance tracking (https://github.com/hpc-io/vol-provenance)

* Asynchronous /O (https://github.com/hpc-io/vol-async)

» Caching (https://github.com/hpc-io/vol-cache)
 Terminal - non-stackable, final connector

« Examples:
» Remote access (e.g. cloud, streaming, etc.)
* Non-HDFS5 file access (e.g., ADIOS BP, netCDF “classic”, etc.)
» Object stores (e.g., DAOS (https://github.com/HDFGroup/vol-daos), S3, Apache Arrow, etc.)

L= =\
/1 Argonne‘) 6 — (O e

PROJECT

https://github.com/hpc-io/vol-provenance
https://github.com/hpc-io/vol-async
https://github.com/hpc-io/vol-cache
https://github.com/HDFGroup/vol-daos

Async VOL Connector

 Pass-through VOL connector
« Can be stacked on any other connector, to provide asynchronous

operations to it

Main developer: Houjun Tang

» Uses an “event set” to manage async operations
« Can extract more performance, e.g., enable async read and write:

Async
Sync
/1 s
Argonne
The HDF Group = O wmowcwsionsror

Write Write Write Write
T1 T2 Tn-1 Tn
* A f Time saved
Compute | Compute | Compute Compute | Wait
T1 T2 T3 Th-1 Thn N\
Time >
Compute | Write | Compute | Write | Compute Compute | Write
T1 T1 T2 T2 T3 Tn-1 Tn
T \\
— ksxw =)

J EXASCALE
COMPUTING
PROJECT

Async VOL Connector

 Pass-through VOL connector

« Can be stacked on any other connector, to provide asynchronous
operations to it

» Uses an “event set” to manage async operations
« Can extract more performance, e.g., enable async read and write:

rite Write Write
T1 T2 Tn-1 Tn
Time saved
Compute | Compute | Compute Compute | W
Async T1 T2 T3 | Tn1 Tn
Time >
Compute | Write | Compute | Write | Compute Compute | Write
Sync T1 Ti T2 T2 T3 |™| Ta1 Tn
il o S 10 CVP zome
Argonne —) PRODECT
2 The HDF Group gonne . . \\~

Async VOL Connector

 Pass-through VOL connector

« Can be stacked on any other connector, to provide asynchronous
operations to it

» Uses an “event set” to manage async operations
« Can extract more performance, e.g., enable async read and write:

Async

Sync

AAAAAAAAAAAAAAAAAA

Write Write Write rite
T1 T2 Tn-1 Tn
* A f Time saved
Compute | Compute | Compute Compute | Wait
T1 T2 T3 ’ Th-1 Tn A \
Time >
Compute | Write | Compute | Write | Compute Compute | Write
T1 T1 T2 T2 T3 Tn-1 Tn
—_
—\
11 _&(\)

J EXASCALE
COMPUTING
PROJECT

Async VOL Connector — Benefits

AMReX Single-level Plotfile 385GB x 5 timestep on Summit

== HDF5 == HDF5-Async

1000
O
m ————__-_____—__- 4__________——————
= 100
—
O
=
—
3
®
10
c
O
2]
Neo] N
C) -——_—-—_________;
1
64 128 256 512

Number of nodes (6 process per node)

A
i

frreeerer

g —
/1
AR The HDF Group * © mnowsuusomron

Observed write time (s)

AMReX Multi-level Plotfile 559GB x 5 timesteps on Summit

100

50

10

== HDF5 == HDF5-Async

/

64 128 256 512

Number of nodes (6 processes per node)

E=%
12 —(\\) = o =
\\~ PROJECT

~
A
rrrrrrr ’""

LAB

Async VOL Connector — Programming Example

fid = HSFopen(..);
gid = H5Gopen (fid, ..);
did = H5Dopen (gid, ..);

status = H5Dwrite (did,

status = H5Dwrite (did,

<other user code>

)

)

https://github.com/hpc-io/vol-async

13

) EXASCALE
COMPUTING
PROJECT

https://github.com/hpc-io/vol-async

Async VOL Connector — Programming Example

es_1d = HBEScreate () ;
fid = H5Fopen_async (.., es id);

gid = H5Gopen_async(fid, .., es id); // Asynchronous, starts when H5Fopen completes
did = H5Dopen_async(gid, .., es_id); // Asynchronous, starts when H5Gopen completes
status = HS5Dwrite_ async(did, .., es id); // Asynchronous, starts when H5Dopen completes,
// may run concurrently with other H5Dwrite in event set
status = HS5Dwrite_ async(did, .., es id); // Asynchronous, starts when H5Dopen completes,
// may run concurrently with other H5Dwrite in event set

<other user code>

H5ESwait (es 1id);

) S
o The HDF Group ATBNNS e

// Create event set for tracking async operations

// Asynchronous, can start immediately

// Wait for operations in event set to complete, buffers
// used for H5Dwrite must only be changed after wait
f;\\
https://github.com/hpc-io/vol-async 14 —\(\ \)

EXASCALE
COMPUTING
PROJECT

https://github.com/hpc-io/vol-async

Async VOL Connector — Programming Example

es_id = H5EScreate () ;

fid = H5Fopen_async (.., es_id); // Asynchronous, can start immediately
gid = H5Gopen_async (fid, ., es_id); // Asynchronous, starts when H5Fopen completes
did = H5Dopen_async (gid, ., es_id); // Asynchronous, starts when H5Gopen completes
status = HS5Dwrite async(did, .., es_id); // Asynchronous, starts when H5Dopen completes,
// may run concurrently with other H5Dwrite in event set
status = HS5Dwrite_ async(did, .., es_id); // Asynchronous, starts when H5Dopen completes,
// may run concurrently with other H5Dwrite in event set

<other user code>

H5ESwait (es_id);

) S
o The HDF Group ATBNNS e

// Create event set for tracking async operations

// Wait for operations in event set to complete,

buffers

// used for H5Dwrite must only be changed after wait

https://github.com/hpc-io/vol-async

15

EXASCALE
COMPUTING
PROJECT

https://github.com/hpc-io/vol-async

Async VOL Connector

e Available now:

e Source: https://github.com/hpc-io/vol-async
e Docs: https://hdf5-vol-async.readthedocs.io/en/latest

e Future work:

e Merge compatible VOL operations

o If two async dataset write operations are putting data into same dataset, can merge into only one call to
underlying VOL connector
o Turn multiple ‘normal’ group create operations into a single ‘multi’ group create operation

e Use multiple background threads
o Needs HDF5 library thread-safety work, to drop global mutex

e Switch to TaskWorks thread engine
o A portable, high-level, task engine designed for HPC workloads
o Task dependency management, background thread execution.

~ R = —
rf/ﬂ’}' Iﬁ| I U I Argonneé 16 _\(\ \\) —) Eég_}g‘ggﬁ\%
The HDF Group = © wnowstusorsron —

https://github.com/hpc-io/vol-async
https://hdf5-vol-async.readthedocs.io/en/latest/

-Cache VOL Connector - Integrating node-local
storage into parallel I/0

Main developer: Huihuo Zheng

Typical HPC storage hierarchy Cache VOL

* Using node-local storage for caching / staging
data for fast and scalable I/O.

e Data migration to and from the remote storage is
performed in the background.

 Managing data movement in multi-tiered
memory / storage through stacking multiple VOL
connectors (async -> cache -> async)

e All complexity is hidden from the users

Remote storage

Node-local storage (SSD, NVMe, etc)
Repo: https://github.com/hpc-io/vol-cache.git

Theta @ ALCF: Lustre + SSD (128 GB / node),
ThetaGPU (DGX-3) @ ALCF: NVMe (15.4 TB / node)
Summit @ OLCF: GPFS + NVMe (1.6 TB / node)

= A s
i EXASCALE
rr/rr}” | 17 — \) =) COMPUTING
\\ PROJECT
\ LAB p "

https://github.com/hpc-io/vol-cache.git

Parallel Write (H5Dwrite)

1. Data is synchronously copied from the

JRs asynchronously by calling the dataset

memory buffer to memory mapped files
on the node-local storage using POSIX 1/0O.
2. Move data from memory mapped
Node-local storage file to the parallel file system
Mo \ /
\ \ / 7

write function from the Async VOL

\\ \ / //
i i A s stacked below the Cache VOL
Parallel file system i 3. Wait for all the tasks to finish in

Shared HDF5 file H5Dclose() / H5Fclose()
w/o caching | Compute /0 (RAM->PFS) Compute
w/ caching Compute RAM->NLS| Compute

1/0: NLS->PFS

Partial overlap of compute with I/0
Details are hidden from the application developers.

frreeerer

L\ —
| D I - o=
2 The HDF Group rgQ!lQE ooooooo \\~

\
EXASCALE
\) —) COMPUTING
PROJECT

Parallel Read (H5Dread)

Create memory mapped files and attached them
to a MPI_Win for one-sided remote access

Node-Iocal[@ @ @ @J MPI_Win
storage

// ‘|v|p| put‘ ‘ 2. Caching data
Compute using MPI_Put
node RAM

1. Reading data
from parallel file
system

,

Single shared HDFS5 file

Parallel file system

First time reading the data

A
i

LN
L/
The HDF Group

frreeerer

BERKELEY LAB

AAAAAAAAAAAAAAAAAA

One-sided communication for accessing

remote node storage.

« Each process exposes a part of its memory to
other processes (MPI Window)

« Other processes can directly read from or write
to this memory, without requiring that the
remote process synchronize (MPI_Put, MPI_Get)

|

Reading data from
NLS using MPI_Put

)
T |

w/o Caching Compute 1/O Compute

1
v

w/ Caching Compute /0 Compute

Reading the data directly from node-local storage

—
o

&

\
EXASCALE

19 \) =) COMPUTING

PROJECT

103 { M w/o cache (Lustre)
{ W w/ cache (SSD)

{9 ek RN Parallel write

O
Q
(2]
~
m
O

frreeerer "II

1 2 4 8 16 32 64 128 256 512
Number of nodes

Parallel write performance on Theta w/ and w/o caching data on
RAM or node-local SSDs. (Lustre stripe count is 48, and Lustre stripe
size is 16MB). Each processor writes 16 MB data to a shared file.

= -
rLsi Argonne

EMERKELEY LAB The HDF Group NATIONAL LABORATORY

Performance evaluation on Theta @ ALCF

| Wl w/o caching (Lustre)
. w/ caching (SSD)

Parallel read

Read rate (GiB/sec)

1 2 4 8 16 32 64 128
Number of nodes

Parallel read performance on Theta. At each step, each processor
reads a random batch (32) of samples (224x224x3) from a shared
HDFS5 file. All the processors together read the entire dataset in one
iteration. The read performance is measured after the first iteration
finishes.

—
20 —(\\) = o =
\\~ PROJECT

VCD100: VOL Connector Development 100

« Subscribe to the hdf5vol mailing list:
« Email hdf5vol-subscribe @hdfgroup.org with “subscribe” as subject

 Clone the “external pass-through” example VOL connector

* An “external” VOL connector that has all VOL callbacks implemented as
transparent “no-ops”, just invoking the underlying VOL connector
« External VOL connectors can be loaded with environment variables

* https://bitbucket.hdfgroup.org/projects/HDF5VOL/repos/external pass through
/browse
 Build the external pass-through connector with logging enabled:
 Follow instructions in README in the git repo
« Modify to your purposes

= =
-l n EWCP zme
GBI The HDF Group B Gerwen \] s

mailto:hdf5vol-subscribe@hdfgroup.org
https://bitbucket.hdfgroup.org/projects/HDF5VOL/repos/external_pass_through/browse

SU bfi I i ng Main developer: THG devs

 Subfiling: a compromise between file-per-process (fpp) and a single shared
file (ssf)

« Multiple files are organized as a Software RAID-0 Implementation
i. Configurable “stripe-depth” and “stripe-set size” RAID 0

striping

ii. Adefault “stripe-set” is created by using 1 file per node
iii. A default “stripe-depth” is 32MB

* One metadata (.h5) file stitching the small files together
* Benefits

« Better use of parallel /0 subsystem
* Reduces the complexity of fpp

* Reduced locking and contention issues to improve performance at larger processor
counts over sff

o~
\\ J EXASCALE
re—) COMPUTING
PROJECT

-Subfiling - Initial results

(h5bench — write benchmark) VPIC-10 (WRITE) MB/second

 Parallel runs on SUMMIT
showing results from 256 to
16384 cores.

« The number of Subfiles
utilized range from 6 (for a
256 MPI rank application run)
to 391 (for the 16K MPI rank
application); based on 42 " X

0

CO reS pe r n Od e . 1024 2048 8192 16384

NUMBER OF CORES

600000
HDF5

SUBFILING
500000

400000

300000

200000

)
2z
o
O
w
7
s
@
2
-
'—
=)
3
[a)
2
<
P
1]
E
&
3

> = —
il T eonneed = =
2 The HDF Group rgonne ™ \\, PROJECT

- Feature: Querying datasets

Objective

« Create complex queries on both metadata and data elements within a HDF5
container

 Retrieve the results of applying those query operations.

Solution

 HDF5 query API routines enable the construction of query requests for execution
on HDF5 containers

« H5Qcreate
 H5Qcombine
« H5Qapply

» H5Qclose

« HDF5 index API routines allow the creation of indexes on the contents of HDF5
objects, to improve query performance

Main developer: THG devs

HDFS5 github repo containing the querying and indexing source code: e } —) exescaie
https://github.com/HDFGroup/hdf5/tree/feature/indexing _\() ERoELT

PROJECT

-Querying and Indexing

Build Index (seconds) Evaluate Query (seconds)
100 1.6
1.4
80 1.2
0 1
v =
g — 0.8
= 40 £ 06
|_
- 0.4
0.2
0 0 -
1 2 4 8 16 32 1 2 4 8 16 32

of MPI procs # of MPI procs

Parallel scaling of index generation and query resolution is evidenced even for small-
scale experiments.

A
i

—
L= =\
\ EXASCALE
™/) —) COMPUTING
PROJECT

frreeerer

SR The HDF Group | © mrowuaonsron \(\“—

ECP HDF5 Applications

P
4. S 2 EWCP =
Argonne \& N FRoXeCT
The HDF Group =~ © wirowusossron —

EQSIM

» High-Performance, Multidisciplinary Simulation

for Regional-Scale Earthquake Hazard and Risk
Assessments

* Provide the first strong coupling and linkage
between simulations of earthquake hazards
(ground motions) and risk (structural system
demands).

« SW4, main code to simulate seismic wave
propagation.

38°30'

38°00'

37730

37°00'

~121°00'

EXASCALE

—, COMPUTING

PROJECT

EQSIM Workflow

Geophysics > Engineering >

S S

Regional-scale Geophysics ground motion Infrastructure response Infrastructure
domain simulations simulations demand / risk
(billions of zones) (thousands of stations)

« Seismologists sets up an earthquake event for simulation.
Various input data

« SW4 generates and outputs ground motions for specified locations.
1D, 2D, 3D, 4D output data

« Analysis codes (OpenSees, ESSI) produces building response.

Visualization and analysis data
S
\\ EXASCALE

r;:}l m m ° y -
Gt The HDF Group Argonne 7" _\(\y) ST

SW4 I/0 with HDF5 integration

* Input
« Material model and topography: sfile: ¥z size, 3x faster, new curvilinear grid.
 Forcing function: SRF-HDF5: 1/3 size, 5x faster.
« Station location: inputHDF5: single file.

* Output
» Time-series
« Station output: SAC-HDF5: 1/5 USGS, same as SAC, single file
« Subsurface output: SSI, with ZFP compression (155GB / 38TB), 3x faster
* Image: imgHDF5, same as native, easy to access
» Checkpoint: chkHDF5 with ZFP compression - 4x to 6x less data (optimization

WIP)
—
= 7\ v EWCP ze
Gt The HDF Group Argonne ' a2

AMReX Applications

 AMReX is a software framework for massively parallel, block-
structured adaptive mesh refinement (AMR) applications.

« HDF5 output format is supported for writing plotfiles and particle
data, asynchronous I/O can also be enabled.

Nyx is an adaptive mesh, massively-parallel,
cosmological simulation code.

/V%x

Castro is an adaptive-mesh compressible radiation / MHD /
hydrodynamics code for astrophysical flows.

.

P, i VR el Tl ¥ e R
Argonne) PROJECT

0
@
£
=
o
o
o
>
1
@
"
2
o

d The HDF Group

Results on Summit

200
® HDF5 m Async-explicit
150
100
50
0
) 2 Y) ©
o Kok 2 16‘3’\@ »\%‘fﬂfo
Number of processes / number of nodes
Single-level (Nyx) Workload
T -3
rLsi Argonne

NATIONAL LABORATORY

Observed I/O time (s)

200

150

100

50

® HDF5 m Async-explicit

— —
O L 0 > ©
o P 2 16‘5\@ »\6'56\%6

Number of processes / number of nodes

Multiple-level (Castro) Workload

38

EXASCALE
COMPUTING
PROJECT

- h5bench - A suite of HDF5 benchmarks

« Captures various I/O patterns

o Locality in memory and in files
m Contiguous, strided, compound data types

o Array dimensionality - 1D, 2D, and 3D
o /0O modes

o Synchronous

o Asynchronous - Implicit and explicit

« Processor type - CPUs and GPUs

o MPI-IO modes
o Collective buffering on or off

« File system configuration
o Alignment and striping

é
rL/l Argonne
The HDF Group = O wmowcwsionsror

https://github.com/hpc-io/h5bench

In memory representation

In HDF5 file representation

Contiguous in memory
and contiguous in file

CE0.. T array A
OO0 0 araye

CI:[:I:]CI:D dataset A
O (00 cateset s

Contiguous in memory
and compound in file

CI0)- O aray
D) O arey 8

OO0)00 dataset A

Compound structure
in memory
and contiguous in file

OO0 00 catseta
OO0 (100 datsset

Compound structure
in memory
and compound in file

OO0 D array a8

O T cataset s

PROJECT

P \
J EXASCALE
— (\) COMPUTING

https://github.com/hpc-io/h5bench

Conclusions

« Testing of stacking of asynchronous I/O and cache VOL is in progress
* Try h5bench for verifying HDF5 performance at scale
« Feedback and adding more 1/O patterns are welcome
 Subfiling development is in progress
« Contact us if you have any querying use cases

« Contact us with any HDF5 performance or functionality problems
» The HDF Group: Helpdesk at help@hdfgroup.org
« HDF5 resources: https://www.hdfgroup.org/
« ECP ExalO: SByna@Ibl.gov

40

PPPPPPP

mailto:help@hdfgroup.org
https://www.hdfgroup.org/
mailto:SByna@lbl.gov

Useful links and info

« HDF5 tutorials
* https://qgithub.com/HDFGroup/Tutorial

« Parallel HDF5 hands-on tutorial examples
« https://github.com/HDFGroup/Tutorial/tree/main/Parallel-hands-on-tutorial

« HUG 2021 (HDF5 User Group) meeting

* https://www.hdfgroup.org/hug/hug?1
« Contact: hug@hdfgroup.org

« HPC Data Management Systems Postdoctoral Scholar position available
at LBNL

 https://tinyurl.com/2021-sdm-postdoc

| P a . O
SR the HDF Group ATEONNET =L

) EXASCALE
) COMPUTING
PROJECT

https://github.com/HDFGroup/Tutorial
https://github.com/HDFGroup/Tutorial/tree/main/Parallel-hands-on-tutorial
https://www.hdfgroup.org/hug/hug21
mailto:hug@hdfgroup.org
https://tinyurl.com/2021-sdm-postdoc

