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Overview

» Features
« HDF5 Virtual Object Layer (VOL) Introduction
« ECP VOL Connectors

« Asynchronous I/0
* Node-local Caching

 Subfiling and querying

« ECP HDF5 Applications and benchmarks
« EQSIM
 AMReX - Nyx and Castro

« Chombo-IO
 h5bench
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HDF5 Virtual Object Layer (VOL)

- VOL Framework is an abstraction layer within HDF5 Library
« Redirects I/O operations into VOL “connector”, immediately after an
API routine is invoked
« Non-1/0O operations handled with library “infrastructure”

« VOL Connectors

* Implement storage for HDF5 objects, and “methods” on those objects
« Dataset create, write / read selection, query metadata, close, ...

« Can be transparently invoked from a dynamically loaded library, without

modifying application source code
» Or even rebuilding the app binary
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VOL: High-Level Overview
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Virtual Object Layer (VOL) Connectors

* Implement callbacks for HDF5 data model operations

« “Terminates” call by performing action directly, or “passes operation
through” by invoking VOL API connector interface:

« Pass-through - can be stacked, must eventually have terminal connector
« Examples:

» Provenance tracking (https://github.com/hpc-io/vol-provenance)

* Asynchronous /O (https://github.com/hpc-io/vol-async)

» Caching (https://github.com/hpc-io/vol-cache)
 Terminal - non-stackable, final connector

« Examples:
» Remote access (e.g. cloud, streaming, etc.)
* Non-HDFS5 file access (e.g., ADIOS BP, netCDF “classic”, etc.)
» Object stores (e.g., DAOS (https://github.com/HDFGroup/vol-daos), S3, Apache Arrow, etc.)
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https://github.com/hpc-io/vol-provenance
https://github.com/hpc-io/vol-async
https://github.com/hpc-io/vol-cache
https://github.com/HDFGroup/vol-daos

Async VOL Connector

 Pass-through VOL connector
« Can be stacked on any other connector, to provide asynchronous

operations to it

Main developer: Houjun Tang

» Uses an “event set” to manage async operations
« Can extract more performance, e.g., enable async read and write:
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Async VOL Connector

 Pass-through VOL connector

« Can be stacked on any other connector, to provide asynchronous
operations to it

» Uses an “event set” to manage async operations
« Can extract more performance, e.g., enable async read and write:
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Async VOL Connector

 Pass-through VOL connector

« Can be stacked on any other connector, to provide asynchronous
operations to it

» Uses an “event set” to manage async operations
« Can extract more performance, e.g., enable async read and write:

Async
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Async VOL Connector — Benefits

AMReX Single-level Plotfile 385GB x 5 timestep on Summit
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AMReX Multi-level Plotfile 559GB x 5 timesteps on Summit
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Async VOL Connector — Programming Example

fid = HSFopen(..);
gid = H5Gopen (fid, ..);
did = H5Dopen (gid, ..);

status = H5Dwrite (did,

status = H5Dwrite (did,

<other user code>

)

)

https://github.com/hpc-io/vol-async

13

) EXASCALE
COMPUTING
PROJECT


https://github.com/hpc-io/vol-async

Async VOL Connector — Programming Example

es_1d = HBEScreate () ;
fid = H5Fopen_async (.., es id);

gid = H5Gopen_async(fid, .., es id); // Asynchronous, starts when H5Fopen completes
did = H5Dopen_async(gid, .., es_id); // Asynchronous, starts when H5Gopen completes
status = HS5Dwrite_ async(did, .., es id); // Asynchronous, starts when H5Dopen completes,
// may run concurrently with other H5Dwrite in event set
status = HS5Dwrite_ async(did, .., es id); // Asynchronous, starts when H5Dopen completes,
// may run concurrently with other H5Dwrite in event set

<other user code>

H5ESwait (es 1id);

) S
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// Create event set for tracking async operations

// Asynchronous, can start immediately

// Wait for operations in event set to complete, buffers
// used for H5Dwrite must only be changed after wait
f;\\
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https://github.com/hpc-io/vol-async

Async VOL Connector — Programming Example

es_id = H5EScreate () ;

fid = H5Fopen_async (.., es_id); // Asynchronous, can start immediately
gid = H5Gopen_async (fid, ., es_id); // Asynchronous, starts when H5Fopen completes
did = H5Dopen_async (gid, ., es_id); // Asynchronous, starts when H5Gopen completes
status = HS5Dwrite async(did, .., es_id); // Asynchronous, starts when H5Dopen completes,
// may run concurrently with other H5Dwrite in event set
status = HS5Dwrite_ async(did, .., es_id); // Asynchronous, starts when H5Dopen completes,
// may run concurrently with other H5Dwrite in event set

<other user code>

H5ESwait (es_id);

) S
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// Create event set for tracking async operations

// Wait for operations in event set to complete,

buffers

// used for H5Dwrite must only be changed after wait

https://github.com/hpc-io/vol-async
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https://github.com/hpc-io/vol-async

Async VOL Connector

e Available now:

e Source: https://github.com/hpc-io/vol-async
e Docs: https://hdf5-vol-async.readthedocs.io/en/latest

e Future work:

e Merge compatible VOL operations

o If two async dataset write operations are putting data into same dataset, can merge into only one call to
underlying VOL connector
o Turn multiple ‘normal’ group create operations into a single ‘multi’ group create operation

e Use multiple background threads
o Needs HDF5 library thread-safety work, to drop global mutex

e Switch to TaskWorks thread engine
o A portable, high-level, task engine designed for HPC workloads
o Task dependency management, background thread execution.
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https://github.com/hpc-io/vol-async
https://hdf5-vol-async.readthedocs.io/en/latest/

-Cache VOL Connector - Integrating node-local
storage into parallel I/0

Main developer: Huihuo Zheng

Typical HPC storage hierarchy Cache VOL

* Using node-local storage for caching / staging
data for fast and scalable I/O.

e Data migration to and from the remote storage is
performed in the background.

 Managing data movement in multi-tiered
memory / storage through stacking multiple VOL
connectors (async -> cache -> async)

e All complexity is hidden from the users

Remote storage

Node-local storage (SSD, NVMe, etc)
Repo: https://github.com/hpc-io/vol-cache.git

Theta @ ALCF: Lustre + SSD (128 GB / node),
ThetaGPU (DGX-3) @ ALCF: NVMe (15.4 TB / node)
Summit @ OLCF: GPFS + NVMe (1.6 TB / node)
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https://github.com/hpc-io/vol-cache.git

Parallel Write (H5Dwrite)

1. Data is synchronously copied from the

JRs asynchronously by calling the dataset

memory buffer to memory mapped files
on the node-local storage using POSIX 1/0O.
2. Move data from memory mapped
Node-local storage file to the parallel file system
Mo \ /
\ \ / 7

write function from the Async VOL

\\ \ / //
i i A s stacked below the Cache VOL
Parallel file system i 3. Wait for all the tasks to finish in

Shared HDF5 file H5Dclose() / H5Fclose()
w/o caching | Compute /0 (RAM->PFS) Compute
w/ caching Compute RAM->NLS| Compute

1/0: NLS->PFS

Partial overlap of compute with I/0
Details are hidden from the application developers.
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Parallel Read (H5Dread)

Create memory mapped files and attached them
to a MPI_Win for one-sided remote access

Node-Iocal[@ @ @ @J MPI_Win
storage

// ‘|v|p| put‘ ‘ 2. Caching data
Compute using MPI_Put
node RAM

1. Reading data
from parallel file
system

,

Single shared HDFS5 file

Parallel file system

First time reading the data
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One-sided communication for accessing

remote node storage.

« Each process exposes a part of its memory to
other processes (MPI Window)

« Other processes can directly read from or write
to this memory, without requiring that the
remote process synchronize (MPI_Put, MPI_Get)

|

Reading data from
NLS using MPI_Put
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Reading the data directly from node-local storage
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Parallel write performance on Theta w/ and w/o caching data on
RAM or node-local SSDs. (Lustre stripe count is 48, and Lustre stripe
size is 16MB). Each processor writes 16 MB data to a shared file.
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Performance evaluation on Theta @ ALCF

| Wl w/o caching (Lustre)
. w/ caching (SSD)

Parallel read

Read rate (GiB/sec)
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Parallel read performance on Theta. At each step, each processor
reads a random batch (32) of samples (224x224x3) from a shared
HDFS5 file. All the processors together read the entire dataset in one
iteration. The read performance is measured after the first iteration
finishes.
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VCD100: VOL Connector Development 100

« Subscribe to the hdf5vol mailing list:
« Email hdf5vol-subscribe @hdfgroup.org with “subscribe” as subject

 Clone the “external pass-through” example VOL connector

* An “external” VOL connector that has all VOL callbacks implemented as
transparent “no-ops”, just invoking the underlying VOL connector
« External VOL connectors can be loaded with environment variables

* https://bitbucket.hdfgroup.org/projects/HDF5VOL/repos/external pass through
/browse
 Build the external pass-through connector with logging enabled:
 Follow instructions in README in the git repo
« Modify to your purposes
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mailto:hdf5vol-subscribe@hdfgroup.org
https://bitbucket.hdfgroup.org/projects/HDF5VOL/repos/external_pass_through/browse

SU bfi I i ng Main developer: THG devs

 Subfiling: a compromise between file-per-process (fpp) and a single shared
file (ssf)

« Multiple files are organized as a Software RAID-0 Implementation
i.  Configurable “stripe-depth” and “stripe-set size” RAID 0

striping

ii. Adefault “stripe-set” is created by using 1 file per node
iii. A default “stripe-depth” is 32MB

* One metadata (.h5) file stitching the small files together
* Benefits

« Better use of parallel /0 subsystem
* Reduces the complexity of fpp

* Reduced locking and contention issues to improve performance at larger processor
counts over sff
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-Subfiling - Initial results

(h5bench — write benchmark) VPIC-10 (WRITE) MB/second

 Parallel runs on SUMMIT
showing results from 256 to
16384 cores.

« The number of Subfiles
utilized range from 6 (for a
256 MPI rank application run)
to 391 (for the 16K MPI rank
application); based on 42 " X
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- Feature: Querying datasets

Objective

« Create complex queries on both metadata and data elements within a HDF5
container

 Retrieve the results of applying those query operations.

Solution

 HDF5 query API routines enable the construction of query requests for execution
on HDF5 containers

« H5Qcreate
 H5Qcombine
« H5Qapply

» H5Qclose

« HDF5 index API routines allow the creation of indexes on the contents of HDF5
objects, to improve query performance

Main developer: THG devs

HDFS5 github repo containing the querying and indexing source code: e } —) exescaie
https://github.com/HDFGroup/hdf5/tree/feature/indexing _\( ) ERoELT
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-Querying and Indexing

Build Index (seconds) Evaluate Query (seconds)
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Parallel scaling of index generation and query resolution is evidenced even for small-
scale experiments.
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ECP HDF5 Applications
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EQSIM

» High-Performance, Multidisciplinary Simulation

for Regional-Scale Earthquake Hazard and Risk
Assessments

* Provide the first strong coupling and linkage
between simulations of earthquake hazards
(ground motions) and risk (structural system
demands).

« SW4, main code to simulate seismic wave
propagation.
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EQSIM Workflow

Geophysics > Engineering >

S S

Regional-scale Geophysics ground motion Infrastructure response Infrastructure
domain simulations simulations demand / risk
(billions of zones) (thousands of stations)

« Seismologists sets up an earthquake event for simulation.
Various input data

« SW4 generates and outputs ground motions for specified locations.
1D, 2D, 3D, 4D output data

« Analysis codes (OpenSees, ESSI) produces building response.

Visualization and analysis data
S
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SW4 I/0 with HDF5 integration

* Input
« Material model and topography: sfile: ¥z size, 3x faster, new curvilinear grid.
 Forcing function: SRF-HDF5: 1/3 size, 5x faster.
« Station location: inputHDF5: single file.

* Output
» Time-series
« Station output: SAC-HDF5: 1/5 USGS, same as SAC, single file
« Subsurface output: SSI, with ZFP compression (155GB / 38TB), 3x faster
* Image: imgHDF5, same as native, easy to access
» Checkpoint: chkHDF5 with ZFP compression - 4x to 6x less data (optimization

WIP)
—
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AMReX Applications

 AMReX is a software framework for massively parallel, block-
structured adaptive mesh refinement (AMR) applications.

« HDF5 output format is supported for writing plotfiles and particle
data, asynchronous I/O can also be enabled.

Nyx is an adaptive mesh, massively-parallel,
cosmological simulation code.

/V%x

Castro is an adaptive-mesh compressible radiation / MHD /
hydrodynamics code for astrophysical flows.
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Results on Summit
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- h5bench - A suite of HDF5 benchmarks

« Captures various I/O patterns

o Locality in memory and in files
m Contiguous, strided, compound data types

o Array dimensionality - 1D, 2D, and 3D
o /0O modes

o Synchronous

o Asynchronous - Implicit and explicit

« Processor type - CPUs and GPUs

o MPI-IO modes
o Collective buffering on or off

« File system configuration
o Alignment and striping

é
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https://github.com/hpc-io/h5bench

In memory representation

In HDF5 file representation

Contiguous in memory
and contiguous in file

CE0.. T array A
OO0 0 araye

CI:[:I:]CI:D dataset A
O (00 cateset s

Contiguous in memory
and compound in file

CI0)- O aray
D) O arey 8

OO0 )00 dataset A

Compound structure
in memory
and contiguous in file

OO0 00 catseta
OO0 (100 datsset

Compound structure
in memory
and compound in file

OO0 D array a8

O T cataset s
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https://github.com/hpc-io/h5bench

Conclusions

« Testing of stacking of asynchronous I/O and cache VOL is in progress
* Try h5bench for verifying HDF5 performance at scale
« Feedback and adding more 1/O patterns are welcome
 Subfiling development is in progress
« Contact us if you have any querying use cases

« Contact us with any HDF5 performance or functionality problems
» The HDF Group: Helpdesk at help@hdfgroup.org
« HDF5 resources: https://www.hdfgroup.org/
« ECP ExalO: SByna@Ibl.gov

40

PPPPPPP



mailto:help@hdfgroup.org
https://www.hdfgroup.org/
mailto:SByna@lbl.gov

Useful links and info

« HDF5 tutorials
* https://qgithub.com/HDFGroup/Tutorial

« Parallel HDF5 hands-on tutorial examples
« https://github.com/HDFGroup/Tutorial/tree/main/Parallel-hands-on-tutorial

« HUG 2021 (HDF5 User Group) meeting

* https://www.hdfgroup.org/hug/hug?1
« Contact: hug@hdfgroup.org

« HPC Data Management Systems Postdoctoral Scholar position available
at LBNL

 https://tinyurl.com/2021-sdm-postdoc
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