
ExaIO HDF5 features and application use cases

Suren Byna
Lawrence Berkeley National Laboratory

ATPESC 2021- Aug 6th, 2021

ExaIO - Many Team Members and Contributors

• LBNL: Quincey Koziol, Houjun Tang, Tony Li, Bin Dong, Alex Sim, Junmin Gu

• ANL: Venkat Vishwanath, Huihuo Zheng, Rick Zamora, Paul Coffman

• The HDF Group: Scot Breitenfeld, Elena Pourmal, John Mainzer, Richard
Warren, Dana Robinson, Neil Fortner, Jerome Soumagne, Jordan
Henderson, Neelam Bagha

• North Carolina State University: John Ravi, Michela Becchi

2

Overview
• Features
• HDF5 Virtual Object Layer (VOL) Introduction
• ECP VOL Connectors

• Asynchronous I/O
• Node-local Caching

• Subfiling and querying
• ECP HDF5 Applications and benchmarks
• EQSIM
• AMReX - Nyx and Castro
• Chombo-IO
• h5bench

3

HDF5 Virtual Object Layer (VOL)

• VOL Framework is an abstraction layer within HDF5 Library
• Redirects I/O operations into VOL “connector”, immediately after an

API routine is invoked
• Non-I/O operations handled with library “infrastructure”

• VOL Connectors
• Implement storage for HDF5 objects, and “methods” on those objects

• Dataset create, write / read selection, query metadata, close, …
• Can be transparently invoked from a dynamically loaded library, without

modifying application source code
• Or even rebuilding the app binary

4

VOL: High-Level Overview

5

HDF5 API

….

….

All other
HDF5
routines

Pa
ss
-th
ro
ug
h

Te
rm
in
al

Virtual
Object
Layer
(VOL)

Operations on a container

HDF5 Library
Infrastructure

N
at
iv
e

As
yn

ch
ro

no
us

D
AO

S

R
ES

T

Ar
ro

w

C
ac

hi
ng

D
at

a
El

ev
at

or

Pr
ov

en
an

ce

C
on

ne
ct

or
s

Application

PD
C

Virtual Object Layer (VOL) Connectors
• Implement callbacks for HDF5 data model operations
• “Terminates” call by performing action directly, or “passes operation

through” by invoking VOL API connector interface:
• Pass-through - can be stacked, must eventually have terminal connector

• Examples:
• Provenance tracking (https://github.com/hpc-io/vol-provenance)
• Asynchronous I/O (https://github.com/hpc-io/vol-async)
• Caching (https://github.com/hpc-io/vol-cache)

• Terminal - non-stackable, final connector
• Examples:

• Remote access (e.g. cloud, streaming, etc.)
• Non-HDF5 file access (e.g., ADIOS BP, netCDF “classic”, etc.)
• Object stores (e.g., DAOS (https://github.com/HDFGroup/vol-daos), S3, Apache Arrow, etc.)

6

https://github.com/hpc-io/vol-provenance
https://github.com/hpc-io/vol-async
https://github.com/hpc-io/vol-cache
https://github.com/HDFGroup/vol-daos

Async VOL Connector

• Pass-through VOL connector
• Can be stacked on any other connector, to provide asynchronous

operations to it
• Uses an “event set” to manage async operations
• Can extract more performance, e.g., enable async read and write:

9

Async

Sync

Main developer: Houjun Tang

Async VOL Connector

10

Async

Sync

• Pass-through VOL connector
• Can be stacked on any other connector, to provide asynchronous

operations to it
• Uses an “event set” to manage async operations
• Can extract more performance, e.g., enable async read and write:

Async VOL Connector

11

Async

Sync

• Pass-through VOL connector
• Can be stacked on any other connector, to provide asynchronous

operations to it
• Uses an “event set” to manage async operations
• Can extract more performance, e.g., enable async read and write:

Async VOL Connector – Benefits

12

Async VOL Connector – Programming Example

13

fid = H5Fopen(..);
gid = H5Gopen(fid, ..);
did = H5Dopen(gid, ..);
status = H5Dwrite(did, ..);

status = H5Dwrite(did, ..);

...
<other user code>
...

https://github.com/hpc-io/vol-async

https://github.com/hpc-io/vol-async

Async VOL Connector – Programming Example

14

es_id = H5EScreate(); // Create event set for tracking async operations
fid = H5Fopen_async(.., es_id); // Asynchronous, can start immediately
gid = H5Gopen_async(fid, .., es_id); // Asynchronous, starts when H5Fopen completes
did = H5Dopen_async(gid, .., es_id); // Asynchronous, starts when H5Gopen completes
status = H5Dwrite_async(did, .., es_id); // Asynchronous, starts when H5Dopen completes,

// may run concurrently with other H5Dwrite in event set
status = H5Dwrite_async(did, .., es_id); // Asynchronous, starts when H5Dopen completes,

// may run concurrently with other H5Dwrite in event set
...
<other user code>
...
H5ESwait(es_id); // Wait for operations in event set to complete, buffers

// used for H5Dwrite must only be changed after wait

https://github.com/hpc-io/vol-async

https://github.com/hpc-io/vol-async

Async VOL Connector – Programming Example

15

es_id = H5EScreate(); // Create event set for tracking async operations
fid = H5Fopen_async(.., es_id); // Asynchronous, can start immediately
gid = H5Gopen_async(fid, .., es_id); // Asynchronous, starts when H5Fopen completes
did = H5Dopen_async(gid, .., es_id); // Asynchronous, starts when H5Gopen completes
status = H5Dwrite_async(did, .., es_id); // Asynchronous, starts when H5Dopen completes,

// may run concurrently with other H5Dwrite in event set
status = H5Dwrite_async(did, .., es_id); // Asynchronous, starts when H5Dopen completes,

// may run concurrently with other H5Dwrite in event set
...
<other user code>
...
H5ESwait(es_id); // Wait for operations in event set to complete, buffers

// used for H5Dwrite must only be changed after wait

https://github.com/hpc-io/vol-async

https://github.com/hpc-io/vol-async

Async VOL Connector

16

● Available now:
● Source: https://github.com/hpc-io/vol-async
● Docs: https://hdf5-vol-async.readthedocs.io/en/latest

● Future work:
● Merge compatible VOL operations

○ If two async dataset write operations are putting data into same dataset, can merge into only one call to
underlying VOL connector

○ Turn multiple ‘normal’ group create operations into a single ‘multi’ group create operation

● Use multiple background threads
○ Needs HDF5 library thread-safety work, to drop global mutex

● Switch to TaskWorks thread engine
○ A portable, high-level, task engine designed for HPC workloads
○ Task dependency management, background thread execution.

https://github.com/hpc-io/vol-async
https://hdf5-vol-async.readthedocs.io/en/latest/

Cache VOL Connector - Integrating node-local
storage into parallel I/O

17

Cache VOL
• Using node-local storage for caching / staging

data for fast and scalable I/O.
• Data migration to and from the remote storage is

performed in the background.
• Managing data movement in multi-tiered

memory / storage through stacking multiple VOL
connectors (async -> cache -> async)

• All complexity is hidden from the users
Node-local storage (SSD, NVMe, etc)

Remote storage

Typical HPC storage hierarchy

Theta @ ALCF: Lustre + SSD (128 GB / node),
ThetaGPU (DGX-3) @ ALCF: NVMe (15.4 TB / node)
Summit @ OLCF: GPFS + NVMe (1.6 TB / node)

Repo: https://github.com/hpc-io/vol-cache.git

Main developer: Huihuo Zheng

https://github.com/hpc-io/vol-cache.git

Parallel Write (H5Dwrite)

18

Partial overlap of compute with I/O

Parallel file system
Shared HDF5 file

Node-local storage

1. Data is synchronously copied from the
memory buffer to memory mapped files
on the node-local storage using POSIX I/O.

2. Move data from memory mapped
file to the parallel file system
asynchronously by calling the dataset
write function from the Async VOL
stacked below the Cache VOL

3. Wait for all the tasks to finish in
H5Dclose() / H5Fclose()

Compute RAM->NLS Compute
I/O: NLS->PFS

Compute I/O (RAMàPFS) Computew/o caching

w/ caching

Details are hidden from the application developers.

Parallel Read (H5Dread)

19

Single shared HDF5 file

MPI_Win

Parallel file system

Compute
node RAM

MPI_Put

Create memory mapped files and attached them
to a MPI_Win for one-sided remote access

1. Reading data
from parallel file
system

2. Caching data
using MPI_Put

Node-local
storage

One-sided communication for accessing
remote node storage.
• Each process exposes a part of its memory to

other processes (MPI Window)
• Other processes can directly read from or write

to this memory, without requiring that the
remote process synchronize (MPI_Put, MPI_Get)

MPI_Get

Compute I/O Compute

Compute I/O Computew/o Caching

w/ Caching

Reading data from
NLS using MPI_Put

First time reading the data Reading the data directly from node-local storage

Performance evaluation on Theta @ ALCF

20

Parallel write performance on Theta w/ and w/o caching data on
RAM or node-local SSDs. (Lustre stripe count is 48, and Lustre stripe
size is 16MB). Each processor writes 16 MB data to a shared file.

Parallel read performance on Theta. At each step, each processor
reads a random batch (32) of samples (224×224×3) from a shared
HDF5 file. All the processors together read the entire dataset in one
iteration. The read performance is measured after the first iteration
finishes.

Parallel read

Parallel write

VCD100: VOL Connector Development 100
• Subscribe to the hdf5vol mailing list:

• Email hdf5vol-subscribe@hdfgroup.org with “subscribe” as subject

• Clone the “external pass-through” example VOL connector
• An “external” VOL connector that has all VOL callbacks implemented as

transparent “no-ops”, just invoking the underlying VOL connector
• External VOL connectors can be loaded with environment variables

• https://bitbucket.hdfgroup.org/projects/HDF5VOL/repos/external_pass_through
/browse

• Build the external pass-through connector with logging enabled:
• Follow instructions in README in the git repo
• Modify to your purposes

21

mailto:hdf5vol-subscribe@hdfgroup.org
https://bitbucket.hdfgroup.org/projects/HDF5VOL/repos/external_pass_through/browse

Subfiling
• Subfiling: a compromise between file-per-process (fpp) and a single shared

file (ssf)
• Multiple files are organized as a Software RAID-0 Implementation

i. Configurable “stripe-depth” and “stripe-set size”
ii. A default “stripe-set” is created by using 1 file per node
iii. A default “stripe-depth” is 32MB

• One metadata (.h5) file stitching the small files together

• Benefits
• Better use of parallel I/O subsystem
• Reduces the complexity of fpp
• Reduced locking and contention issues to improve performance at larger processor

counts over sff

Main developer: THG devs

Subfiling - Initial results
(h5bench – write benchmark)
• Parallel runs on SUMMIT

showing results from 256 to
16384 cores.

• The number of Subfiles
utilized range from 6 (for a
256 MPI rank application run)
to 391 (for the 16K MPI rank
application); based on 42
cores per node.

27

Feature: Querying datasets
Objective
• Create complex queries on both metadata and data elements within a HDF5

container
• Retrieve the results of applying those query operations.
Solution
• HDF5 query API routines enable the construction of query requests for execution

on HDF5 containers
• H5Qcreate
• H5Qcombine
• H5Qapply
• H5Qclose

• HDF5 index API routines allow the creation of indexes on the contents of HDF5
objects, to improve query performance

HDF5 github repo containing the querying and indexing source code:
https://github.com/HDFGroup/hdf5/tree/feature/indexing

Main developer: THG devs

Querying and Indexing

0

20

40

60

80

100

1 2 4 8 16 32

Build Index (seconds)

of MPI procs

Ti
m

e
(s

)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 2 4 8 16 32

Evaluate Query (seconds)

Parallel scaling of index generation and query resolution is evidenced even for small-
scale experiments.

Ti
m

e
(s

)

of MPI procs

ECP HDF5 Applications

32

EQSIM

• High-Performance, Multidisciplinary Simulation
for Regional-Scale Earthquake Hazard and Risk
Assessments

• Provide the first strong coupling and linkage
between simulations of earthquake hazards
(ground motions) and risk (structural system
demands).

• SW4, main code to simulate seismic wave
propagation.

33

EQSIM Workflow

• Seismologists sets up an earthquake event for simulation.

• SW4 generates and outputs ground motions for specified locations.

• Analysis codes (OpenSees, ESSI) produces building response.

34

Various input data

1D, 2D, 3D, 4D output data

Visualization and analysis data

SW4 I/O with HDF5 integration

• Input
• Material model and topography: sfile: ½ size, 3x faster, new curvilinear grid.
• Forcing function: SRF-HDF5: 1/3 size, 5x faster.
• Station location: inputHDF5: single file.

• Output
• Time-series

• Station output: SAC-HDF5: 1/5 USGS, same as SAC, single file
• Subsurface output: SSI, with ZFP compression (155GB / 38TB), 3x faster

• Image: imgHDF5, same as native, easy to access
• Checkpoint: chkHDF5 with ZFP compression - 4x to 6x less data (optimization

WIP)
36

AMReX Applications

• AMReX is a software framework for massively parallel, block-
structured adaptive mesh refinement (AMR) applications.
• HDF5 output format is supported for writing plotfiles and particle

data, asynchronous I/O can also be enabled.

37

Nyx is an adaptive mesh, massively-parallel,
cosmological simulation code.

Castro is an adaptive-mesh compressible radiation / MHD /
hydrodynamics code for astrophysical flows.

Results on Summit

38

Single-level (Nyx) Workload Multiple-level (Castro) Workload

h5bench - A suite of HDF5 benchmarks

● Captures various I/O patterns
○ Locality in memory and in files

■ Contiguous, strided, compound data types
○ Array dimensionality - 1D, 2D, and 3D

● I/O modes
○ Synchronous
○ Asynchronous - Implicit and explicit

● Processor type - CPUs and GPUs
● MPI-IO modes

○ Collective buffering on or off
● File system configuration

○ Alignment and striping

https://github.com/hpc-io/h5bench

…

…

…

…

In memory representation

Contiguous in memory
and contiguous in file

In HDF5 file representation

Contiguous in memory
and compound in file …

…
…

…
…

array A

array B

dataset A

dataset B

array A

array B
dataset AB

array AB

dataset A

dataset B

… array AB … dataset AB

Compound structure
in memory
and contiguous in file

Compound structure
in memory
and compound in file

https://github.com/hpc-io/h5bench

Conclusions
• Testing of stacking of asynchronous I/O and cache VOL is in progress
• Try h5bench for verifying HDF5 performance at scale

• Feedback and adding more I/O patterns are welcome
• Subfiling development is in progress
• Contact us if you have any querying use cases
• Contact us with any HDF5 performance or functionality problems

• The HDF Group: Helpdesk at help@hdfgroup.org
• HDF5 resources: https://www.hdfgroup.org/
• ECP ExaIO: SByna@lbl.gov

40

mailto:help@hdfgroup.org
https://www.hdfgroup.org/
mailto:SByna@lbl.gov

Useful links and info

• HDF5 tutorials
• https://github.com/HDFGroup/Tutorial
• Parallel HDF5 hands-on tutorial examples

• https://github.com/HDFGroup/Tutorial/tree/main/Parallel-hands-on-tutorial

• HUG 2021 (HDF5 User Group) meeting
• https://www.hdfgroup.org/hug/hug21
• Contact: hug@hdfgroup.org

• HPC Data Management Systems Postdoctoral Scholar position available
at LBNL
• https://tinyurl.com/2021-sdm-postdoc

41

https://github.com/HDFGroup/Tutorial
https://github.com/HDFGroup/Tutorial/tree/main/Parallel-hands-on-tutorial
https://www.hdfgroup.org/hug/hug21
mailto:hug@hdfgroup.org
https://tinyurl.com/2021-sdm-postdoc

