
ATPESC Numerical Software Track

AMReX: Building a Block-Structured
AMR Application (and More)

Presented to
ATPESC 2021 Participants

Ann Almgren
Deputy Director, AMReX ECP Co-Design Center
Senior Scientist and Group Lead, CCSE, LBNL

Don Willcox
Postdoctoral Researcher, LBNL

Date 08/10/2021

ATPESC 2021, August 2-13, 20212

Setting the Stage
Most of the problems we solve today are hard.

Characteristics of these problems are
often that they couple multiple physical
processes across a range of spatial
and temporal scales.

Gone are the days of simple physics, simple geometry,
single algorithm, homogeneous architectures … L

So how do we build algorithms and software for hard multi-
physics multi-scale multi-rate problems without starting over
every time?

WarpX project: Jean-Luc Vay, PI

ATPESC 2021, August 2-13, 20213

Setting the Stage (p2)

https://ceed.exascaleproject.org/vis/

Unstructured:
• Can fit the mesh to any geometry – much more generality
• No loss of accuracy at domain boundaries
• More “book-keeping” for connectivity information, etc
• Geometry generation becomes time-consuming

Structured:
• Easier to write discretizations
• Simple data access patterns
• Extra order of accuracy due to cancellation of error
• Easy to generate complex boundaries through cut

cells but hard to maintain accuracy at boundaries

TINKER: https://www.epcc.ed.ac.uk

Not all simulations use a mesh

But for those that do, the choice is
usually structured vs unstructured.

AMReX: Emmanuel Motheau

ATPESC 2021, August 2-13, 20214

Structured Grid Options

http://silas.psfc.mit.edu/22.15/lectures/chap4.xml

https://commons.wikimedia.org/wiki

Logically rectangular doesn’t mean physically
rectangular

Structured with non-constant cells split pros and cons
of structured vs unstructured:

• Can fit (simple) non-rectangular boundaries
while still having known connectivity

• Finer in certain regions (mesh refinement)
• Harder to maintain accuracy

http://silas.psfc.mit.edu/22.15/lectures/chap4.xm
l

http://www.cfoo.co.za/simocean/modelsroms.php

ATPESC 2021, August 2-13, 20215

More Structured Grid Options

Structured grid does not have to mean the
entire domain is logically rectangular either.

One can also “prune” the grids so as to not waste
memory or MPI ranks – can still use rectangular
cells in non-rectangular domain.

Grid pruning can save both memory and work.

ATPESC 2021, August 2-13, 20216

Why Is Uniform Cell Size Good?

Numerical Analysis 101:

We often use a centered difference as an approximation for a gradient,

Note we only get second-order accuracy if we use constant cell spacing.

Can we confine this error?

ATPESC 2021, August 2-13, 20217

Can We Have the Best Of Both Worlds?
Distorting the mesh is not ideal, but we can’t afford uniformly fine grid.

Adaptive Mesh Refinement:
• refines mesh in regions of interest
• allows local regularity – accuracy, ease of discretization, easy data access
• naturally allows hierarchical parallelism
• uses special discretizations only at coarse/fine interfaces (co-dimension 1)
• requires only a small fraction of the book-keeping cost of unstructured grids

https://iopscience.iop.org/article/
10.1088/0067-0049/186/2/457)

Example:
AMReX

Example:
FLASH

Grid sizes
May differ Same

Child grid have unique parent?

No Yes

https://iopscience.iop.org/article/

ATPESC 2021, August 2-13, 20218

Patch-Based vs OctTree

http://cucis.ece.northwestern.edu/projects/DAMSEL/

Both styles of block-structured AMR break the domain into logically rectangular
grids/patches. Level-based AMR organizes the grids by levels; quadtree/octree
organizes the grids as leaves on the tree.

ATPESC 2021, August 2-13, 20219

“AMR for One” does not have to mean “AMR for All”

For example, in the MFiX-Exa
code, we define a level set that
holds the distance to the nearest
wall . The level set is only used
by the particles to compute
particle-wall collisions.

We refine the mesh on which the
level set is defined in order to
capture fine geometric features …
but the particles and fluid are both
defined on the coarser mesh only.

Particles, particle mesh, and level set mesh at
the bottom of a cylinder in an MFiX-Exa
simulation.

AMReX: Johannes Blaschke

ATPESC 2021, August 2-13, 202110

AMReX applications include …
AMR has a long history in compressible astrophysics and other
compressible phenomena.

Applications using AMReX include

• Low Mach number Combustion – heat release may look very
different on coarse and fine levels

• Low Mach number astrophysics – 1-d background state plus
perturbational solution

• Moist atmospheric modeling
• Solid mechanics, e.g. microstructure evolution
• Lattice Boltzmann, cellular automata ….

Flows with particles add complexity when particles and grids
interact

Especially interesting ways to use AMR include AMAR – i.e.
different physics / algorithms at different levels of refinement

ATPESC 2021, August 2-13, 202111

What about Time-Stepping?
AMR doesn’t dictate the spatial or temporal discretization on a single patch, but we need to make sure
the data at all levels gets to the same time.

The main question is:
To subcycle or not to subcycle?

Subcycling in time means taking multiple time steps on finer levels relative to coarser levels.

Non-subcycling:
• Same dt on every grid at every level
• Every operation can be done as a multi-level operation before proceeding to the next operation,

e.g. if solving advection-diffusion-reaction system, we can complete the advection step on all
grids at all levels before computing diffusion

Subycling:
• dt / dx usually kept constant
• Requires separation of “level advance” from “synchronization operations”
• Can make algorithms substantially more complicated

ATPESC 2021, August 2-13, 202112

AMReX Hands-On Examples
Let’s do a few hands-on exercises that demonstrate AMReX capability:

“AMR 101”: AMR for scalar advection

• Multilevel mesh data – fluid velocity on faces and tracer on cell centers
• Dynamic AMR
• Two time-stepping options:

• Subcycling in time with refluxing (to enforce conservation)
• No subcycling in time

Instructions for how to access and run the code are on the web page:

Let’s all move to the slack channel to ask questions and share results!

https://xsdk-project.github.io/MathPackagesTraining2021/lessons/amrex/

https://xsdk-project.github.io/MathPackagesTraining/lessons/amrex/
https://xsdk-project.github.io/MathPackagesTraining/lessons/amrex/

ATPESC 2021, August 2-13, 202113

Ten minutes for hands-on exercises …
Question

How many steps in subcycling vs
not to reach t = 2?

Total time with subcycling vs not?

Was phi conserved?

How did run times compare with
MPI?

Why could we just check
conservation by summing at the
coarsest level?

ATPESC 2021, August 2-13, 202114

AMR 101: Take-away
Question On my workstation Take-away

1. How many steps in subcycling
vs not to reach t = 2?

49 coarse / 392 fine (subcycling)
vs 364 (no subcycling)

Additional factors – such as how
often we compute dt – can
change the answer

2. Total time with subcycling vs
not?

Roughly 4:3 – subcycling faster More steps at fine level but fewer
total cells advanced -- which is
faster may depend on how much
work at each level

3. Was phi conserved? Yes with no-subcycling
Yes with subcyling but only if
do_refluxing = 1

Either approach can be
conservative, but conservation is
achieved differently

4. How did run times compare
with MPI?

Roughly 3x speedup with 4 MPI
processes

Perfect scaling requires having
enough work, making sure all
parts of the code scale, etc

5. Why could we just check
conservation by summing at the
coarsest level?

Because we made sure to
explicitly “average down” the fine
solution onto the coarser meshes

ATPESC 2021, August 2-13, 202115

Beyond Linear Advection
This tutorial wasn’t actually very complicated, but hopefully it suggests that if you don’t want to
write a parallel GPU-ready AMR code from scratch, something like this might be a good starting
point…

Key things you need to know if you want to use AMR:

• How to advance the data one patch at a time

• What the right matching conditions are at coarse/fine interfaces

• This depends very much on the type of equation, e.g. hyperbolic vs elliptic, and what
features of the solution are important (e.g., is conservation important?)

• How you solve on the patch (e.g. with implicit vs explicit update) affects how you
synchronize between levels

ATPESC 2021, August 2-13, 202116

Let’s model the dye a different way …
Let’s imagine instead that we model the dye as a collection of particles.
And let’s make the flow more interesting by inserting an obstacle in the
flow.

In addition to mesh data, AMReX supports
• particle data – multiple “types” with different numbers of

attributes
• geometric data for solid obstacles/boundaries in the form of “cut

cell” quantities (EB = embedded boundary representation)

Note that the cut cell / embedded boundary approach in a structured
mesh is very different than an unstructured mesh:

• In a structured mesh, “creating” the geometry means locally
intersecting the object with the mesh

• In an unstructured mesh, “creating” the geometry means defining the
entire mesh in a way that aligns with the object

Unstructured meshes change with the geometry

Structured meshes don’t … but we need to
compute new intersections

ATPESC 2021, August 2-13, 202117

AMReX Hands-On Examples
Let’s do another hands-on exercise

“AMR 102”: Particles and Linear Solvers and EB, Oh My!

• Fluid velocity initialized on cell faces
• Obstacle placed in the flow using EB approach
• Velocity field “projected” to ensure divergence-free flow around the object
• Passive particles move with the velocity field, mimicking the presence of the dye

Instructions for how to access and run the code are on the web page:

Let’s all move to the slack channel to ask questions and share results!

https://xsdk-project.github.io/MathPackagesTraining2020/lessons/amrex/

https://xsdk-project.github.io/MathPackagesTraining/lessons/amrex/
https://xsdk-project.github.io/MathPackagesTraining/lessons/amrex/

ATPESC 2021, August 2-13, 202118

Ten minutes for hands-on exercise …
Question On My Workstation Take-away

Did the particles make the same
pattern as the tracer did?

Did it take a lot of time to
generate the geometric
information associated with the
obstacle in the flow?

How does the the total run time
of this method compare with our
previous method (for single
level)?

Was phi conserved with this
approach?

ATPESC 2021, August 2-13, 202119

AMR 102: Take-away

Question On My Workstation Take-away

Did the particles make the same
pattern as the tracer did?

Without the obstacle, yes.
With the obstacle, it was a different
flow field

Both particles and mesh data can
serve similar purposes… and we
can move back and forth between
them.

Did it take a lot of time to generate
the geometric information
associated with the obstacle in the
flow?

Running the 3D calculation 216
steps to reach t=2, my total time
was 33.8 seconds. Of that only
0.014s were spent creating the
geometric information.

With structured grids, changing the
geometry is much cheaper than with
unstructured grids.

How does the the total run time of
this method compare with our
previous method (for single level)?

Amr101 was much faster!
(Be sure to set max_level = 0 in
Amr101, and move the cylinder
outside the domain in 102.)

Linear solvers are often the most
expensive part of the simulation.

Was phi conserved with this
approach?

Yes – because particles never lose
their strength and we don’t lose any
particles.

If we want to measure conservation
of phi on mesh, we must do
conservative deposition

ATPESC 2021, August 2-13, 202120

Software Support for AMR

There are a number of AMR software packages available –

They all
• Provide data containers for blocks of data at different resolutions
• manage the metadata – same-level and coarse-fine box intersections
• manage re-gridding (creation of new grids based on user-specified refinement criteria)

They differ on:

• what types of data they support – e.g. mesh data on cell-centers vs nodes, particles, …?
• what types of time-stepping they support (many are no-subcycling only)
• whether they support separate a “dual grid” approach
• what degree of parallelism do they support? MPI only, MPI+X (what X?)
• what task iteration support – asynchronous, fork-join, kernel launching…?
• how flexible is the load balancing?
• what additional “native” features – e.g. AMG/GMG solvers?

ATPESC 2021, August 2-13, 202121

In addition to what you’ve seen, AMReX supports:
• a “dual grid” approach – particles, e.g. can live on different grid layout than fluid does

• MPI + OpenMP on multicore; MPI + CUDA (HIP/DPC++) on GPUs
• support using lambdas for kernel launching on CPU vs GPU
• (Can also use OpenMP / OpenACC)
• Kernels can be C++ or Fortran
• Performance portability – e.g., set USE_CUDA = TRUE or FALSE at compile-time

• task iteration – asynchronous, fork-join, kernel launching…

• flexible load balancing

• “native” AMR/GMG solvers

• “native” async I/O along with support for HDF5 (WIP)
• format supported by Visit, Paraview, yt

ATPESC 2021, August 2-13, 202122

You shouldn’t have to use just one package:

Suppose your linear systems are too “hard” for geometric multigrid?
• Call hypre/petsc – as a solver for the full equation, or as a “bottom solver” in the GMG

hierarchy

Suppose you want to experiment with different time-stepping schemes?
• AMReX is interoperable with SUNDIALS (see Time Integration section) – SUNDIALS time

integrators understand MultiFABs …

Suppose your equations are too painful to type out in stencil form?
• Use the new “CodeGen” python/sympy à AMReX translator to express – in ready-to-

compile code – the initial data and right hand side for your time evolution equation

ATPESC 2021, August 2-13, 202123

AMReX Core Mesh Data Hierarchy

• IntVect
– Dimension length array for indexing.

• Box
– Rectilinear region of index space (using IntVects)

• BoxArray
– Union of Boxes at a given level

• FArrayBox (FAB)
– Data defined on a box (double, integer, complex, etc.)
– Stored in column-major order (Fortran)

• MultiFAB
– Collection of FArrayBoxes at a single level
– Contains a Distribution Map defining the relationship across MPI Ranks.
– Primary Data structure for AMReX mesh based work.

Simplest
Structures

Most
Complex
Structures

ATPESC 2021, August 2-13, 202124

● Each MultiFab contains
pointers to local grid data for
one MPI rank + grid
distribution metadata

● Loop over local data with the
MultiFab Iterator.
For OpenMP, generate logical
tiles for local grids.

How AMReX Loops over Mesh Data

● The Array4 contains a pointer and access operator().
The lambda captures it by value.

● The ParallelFor takes index space in a box and a
C++ lambda function to call on each 3D index

● MPI-distributed data at all levels stored as a vector of
AMReX MultiFab objects

ATPESC 2021, August 2-13, 202125

Built-In AMReX Features Enable Straightforward GPU
Acceleration

● The ParallelFor takes index space in a box and a
C++ lambda function to call on each 3D index.

● The Array4 contains a pointer and access operator().
Captured by value in the lambda.

● AMReX memory arena uses CUDA Unified Memory

● AMReX ParallelFor launches CUDA kernel

● All we had to do was label our “work” lambda function
as a GPU function!

ATPESC 2021, August 2-13, 202126

Recall what we’ve seen in our examples…

• “AMR 101”: AMR for scalar advection
• Multilevel mesh data – fluid velocity on faces and tracer on cell centers
• Subcycling in time (or not) with refluxing (or not)
• Dynamic AMR

• “AMR 102” : use a Poisson solve to compute incompressible flow around an obstacles then advect the
particles in that flow field

• Single-level mesh data – fluid velocity on faces, EB obstacles defined by volume and area fractions
• Linear solver (geometric multigrid)
• Particle advection

We didn’t have time for this one, but “AMReX-Pachinko” is an example of particles falling under gravity
through an obstacle course, bouncing off the solid obstacles – here we see an example of particle-obstacle
and particle-wall collisions

https://xsdk-project.github.io/MathPackagesTraining2021/lessons/amrex/

In summary …

https://xsdk-project.github.io/MathPackagesTraining/lessons/amrex/

ATPESC 2021, August 2-13, 202127

Take Away Messages

If you’re interested in learning more about AMREX:
• the software: https://www.github.com/AMReX-Codes/amrex
• the documentation: https://amrex-codes.github.io/amrex
• some movies based on AMReX: https://amrex-codes.github.io/amrex/gallery.html

• Different problems require different spatial discretizations and different data structures – the most
common are

• Structured mesh
• Unstructured mesh
• Particles (which can be combined with structured and/or unstructured meshes)

• Structured mesh doesn’t equal “just” flow in a box

• There are quite a few AMR software packages – they have several commonalities and a large number of
differences, both in what functionality they support and on what architectures they are performant

• Interoperability is important! See the next few sessions for how different packages can be used
together.

https://www.github.com/AMReX-Codes/amrex
https://amrex-codes.github.io/amrex
https://amrex-codes.github.io/amrex/gallery.html

ATPESC 2021, August 2-13, 202128

A final takeaway …

