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Setting the Stage
Most of the problems we solve today are hard.

Characteristics of these problems are 
often that they couple multiple physical 
processes across a range of spatial 
and temporal scales.  

Gone are the days of simple physics, simple geometry, 
single algorithm, homogeneous architectures … L

So how do we build algorithms and software for hard multi-
physics multi-scale multi-rate problems without starting over 
every time?

WarpX project: Jean-Luc Vay, PI
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Setting the Stage (p2)

https://ceed.exascaleproject.org/vis/

Unstructured:
• Can fit the mesh to any geometry – much more generality 
• No loss of accuracy at domain boundaries
• More “book-keeping” for connectivity information, etc
• Geometry generation becomes time-consuming

Structured:
• Easier to write discretizations
• Simple data access patterns
• Extra order of accuracy due to cancellation of error
• Easy to generate complex boundaries through cut 

cells but hard to maintain accuracy at boundaries

TINKER: https://www.epcc.ed.ac.uk

Not all simulations use a mesh

But for those that do, the choice is 
usually structured vs unstructured.

AMReX: Emmanuel Motheau
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Structured Grid Options

http://silas.psfc.mit.edu/22.15/lectures/chap4.xml

https://commons.wikimedia.org/wiki

Logically rectangular doesn’t mean physically 
rectangular

Structured with non-constant cells split pros and cons 
of structured vs unstructured:

• Can fit (simple) non-rectangular boundaries 
while still having known connectivity

• Finer in certain regions (mesh refinement)
• Harder to maintain accuracy

http://silas.psfc.mit.edu/22.15/lectures/chap4.xm
l

http://www.cfoo.co.za/simocean/modelsroms.php
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More Structured Grid Options

Structured grid does not have to mean the 
entire domain is logically rectangular either.

One can also “prune” the grids so as to not waste 
memory or MPI ranks – can still use rectangular 
cells in non-rectangular domain.

Grid pruning can save both memory and work.
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Why Is Uniform Cell Size Good?

Numerical Analysis 101:

We often use a centered difference as an approximation for a gradient,

Note we only get second-order accuracy if we use constant cell spacing.

Can we confine this error?
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Can We Have the Best Of Both Worlds?
Distorting the mesh is not ideal, but we can’t afford uniformly fine grid.

Adaptive Mesh Refinement:
• refines mesh in regions of interest
• allows local regularity – accuracy, ease of discretization, easy data access
• naturally allows hierarchical parallelism 
• uses special discretizations only at coarse/fine interfaces (co-dimension 1)
• requires only a small fraction of the book-keeping cost of unstructured grids

https://iopscience.iop.org/article/
10.1088/0067-0049/186/2/457)

Example: 
AMReX

Example: 
FLASH

Grid sizes
May differ Same

Child grid have unique parent?

No Yes

https://iopscience.iop.org/article/
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Patch-Based vs OctTree

http://cucis.ece.northwestern.edu/projects/DAMSEL/

Both styles of block-structured AMR break the domain into logically rectangular 
grids/patches.   Level-based AMR organizes the grids by levels; quadtree/octree 
organizes the grids as leaves on the tree.
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“AMR for One” does not have to mean “AMR for All”

For example, in the MFiX-Exa
code, we define a level set that 
holds the distance to the nearest 
wall .  The level set is only used 
by the particles to compute 
particle-wall collisions.

We refine the mesh on which the 
level set is defined in order to 
capture fine geometric features … 
but the particles and fluid are both 
defined on the coarser mesh only.

Particles, particle mesh, and level set mesh at 
the bottom of a cylinder in an MFiX-Exa
simulation.

AMReX: Johannes Blaschke
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AMReX applications include …
AMR has a long history in compressible astrophysics and other 
compressible phenomena.

Applications using AMReX include

• Low Mach number Combustion – heat release may look very 
different on coarse and fine levels

• Low Mach number astrophysics – 1-d background state plus 
perturbational solution

• Moist atmospheric modeling
• Solid mechanics, e.g. microstructure evolution
• Lattice Boltzmann, cellular automata ….

Flows with particles add complexity when particles and grids 
interact

Especially interesting ways to use AMR include AMAR – i.e. 
different physics / algorithms at different levels of refinement
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What about Time-Stepping?
AMR doesn’t dictate the spatial or temporal discretization on a single patch, but we need to make sure 
the data at all levels gets to the same time. 

The main question is:   
To subcycle or not to subcycle?

Subcycling in time means taking multiple time steps on finer levels relative to coarser levels.

Non-subcycling:
• Same dt on every grid at every level
• Every operation can be done as a multi-level operation before proceeding to the next operation, 

e.g.  if solving advection-diffusion-reaction system, we can complete the advection step on all 
grids at all levels before computing diffusion

Subycling:
• dt / dx usually kept constant
• Requires separation of “level advance” from “synchronization operations”
• Can make algorithms substantially more complicated
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AMReX Hands-On Examples
Let’s do a few hands-on exercises that demonstrate AMReX capability:

“AMR 101”: AMR for scalar advection

• Multilevel mesh data – fluid velocity on faces and tracer on cell centers
• Dynamic AMR
• Two time-stepping options:

• Subcycling in time with refluxing (to enforce conservation)
• No subcycling in time

Instructions for how to access and run the code are on the web page:

Let’s all move to the slack channel to ask questions and share results!

https://xsdk-project.github.io/MathPackagesTraining2021/lessons/amrex/ 

https://xsdk-project.github.io/MathPackagesTraining/lessons/amrex/
https://xsdk-project.github.io/MathPackagesTraining/lessons/amrex/
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Ten minutes for hands-on exercises …
Question

How many steps in subcycling vs 
not to reach t = 2?

Total time with subcycling vs not?

Was phi conserved?

How did run times compare with 
MPI?

Why could we just check 
conservation by summing at the 
coarsest level?
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AMR 101:  Take-away
Question On my workstation Take-away

1. How many steps in subcycling
vs not to reach t = 2?

49 coarse / 392 fine (subcycling)
vs 364 (no subcycling)

Additional factors – such as how 
often we compute dt – can
change the answer

2.  Total time with subcycling vs 
not?

Roughly 4:3 – subcycling faster More steps at fine level but fewer 
total cells advanced -- which is 
faster may depend on how much 
work at each level

3. Was phi conserved? Yes with no-subcycling
Yes with subcyling but only if 
do_refluxing = 1

Either approach can be 
conservative, but conservation is 
achieved differently

4. How did run times compare 
with MPI?

Roughly 3x speedup with 4 MPI 
processes 

Perfect scaling requires having
enough work, making sure all 
parts of the code scale, etc

5. Why could we just check 
conservation by summing at the 
coarsest level?

Because we made sure to 
explicitly “average down” the fine 
solution onto the coarser meshes
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Beyond Linear Advection
This tutorial wasn’t actually very complicated, but hopefully it suggests that if you don’t want to 
write a parallel GPU-ready AMR code from scratch, something like this might be a good starting 
point…

Key things you need to know if you want to use AMR:

• How to advance the data one patch at a time

• What the right matching conditions are at coarse/fine interfaces

• This depends very much on the type of equation, e.g. hyperbolic vs elliptic, and what 
features of the solution are important (e.g., is conservation important?)

• How you solve on the patch (e.g. with implicit vs explicit update) affects how you 
synchronize between levels
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Let’s model the dye a different way …
Let’s imagine instead that we model the dye as a collection of particles.  
And let’s make the flow more interesting by inserting an obstacle in the 
flow.

In addition to mesh data, AMReX supports 
• particle data – multiple “types” with different numbers of 

attributes
• geometric data for solid obstacles/boundaries in the form of “cut 

cell” quantities (EB = embedded boundary representation)

Note that the cut cell / embedded boundary approach in a structured 
mesh is very different than an unstructured mesh:

• In a structured mesh, “creating” the geometry means locally 
intersecting the object with the mesh

• In an unstructured mesh, “creating” the geometry means defining the 
entire mesh in a way that aligns with the object

Unstructured meshes change with the geometry

Structured meshes don’t … but we need to 
compute new intersections
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AMReX Hands-On Examples
Let’s do another hands-on exercise

“AMR 102”: Particles and Linear Solvers and EB, Oh My!

• Fluid velocity initialized on cell faces
• Obstacle placed in the flow using EB approach
• Velocity field “projected” to ensure divergence-free flow around the object
• Passive particles move with the velocity field, mimicking the presence of the dye

Instructions for how to access and run the code are on the web page:

Let’s all move to the slack channel to ask questions and share results!

https://xsdk-project.github.io/MathPackagesTraining2020/lessons/amrex/ 

https://xsdk-project.github.io/MathPackagesTraining/lessons/amrex/
https://xsdk-project.github.io/MathPackagesTraining/lessons/amrex/
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Ten minutes for hands-on exercise …
Question On My Workstation Take-away 

Did the particles make the same 
pattern as the tracer did?

Did it take a lot of time to 
generate the geometric 
information associated with the 
obstacle in the flow?

How does the the total run time 
of this method compare with our 
previous method (for single 
level)?

Was phi conserved with this 
approach?
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AMR 102: Take-away

Question On My Workstation Take-away 

Did the particles make the same 
pattern as the tracer did?

Without the obstacle, yes.
With the obstacle, it was a different 
flow field

Both particles and mesh data can 
serve similar purposes… and we
can move back and forth between 
them.

Did it take a lot of time to generate 
the geometric information 
associated with the obstacle in the 
flow?

Running the 3D calculation 216 
steps to reach t=2, my total time 
was 33.8 seconds.  Of that only 
0.014s were spent creating the 
geometric information.

With structured grids, changing the 
geometry is much cheaper than with 
unstructured grids.

How does the the total run time of 
this method compare with our 
previous method (for single level)?

Amr101 was much faster!
(Be sure to set max_level = 0 in 
Amr101, and move the cylinder 
outside the domain in 102.)

Linear solvers are often the most 
expensive part of the simulation.

Was phi conserved with this 
approach?

Yes – because particles never lose 
their strength and we don’t lose any 
particles.

If we want to measure conservation 
of  phi on mesh, we must do 
conservative deposition
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Software Support for AMR

There are a number of AMR software packages available –

They all 
• Provide data containers for blocks of data at different resolutions
• manage the metadata – same-level and coarse-fine box intersections 
• manage re-gridding (creation of new grids based on user-specified refinement criteria)

They differ on:

• what types of data they support – e.g. mesh data on cell-centers vs nodes, particles, …?
• what types of time-stepping they support (many are no-subcycling only)
• whether they support separate a “dual grid” approach
• what degree of parallelism do they support?  MPI only, MPI+X (what X?)
• what task iteration support – asynchronous, fork-join, kernel launching…?
• how flexible is the load balancing?   
• what additional “native” features – e.g. AMG/GMG solvers?
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In addition to what you’ve seen, AMReX supports:
• a “dual grid” approach – particles, e.g. can live on different grid layout than fluid does

• MPI + OpenMP on multicore; MPI + CUDA (HIP/DPC++) on GPUs
• support using lambdas for kernel launching on CPU vs GPU
• (Can also use OpenMP / OpenACC)
• Kernels can be C++ or Fortran
• Performance portability – e.g., set USE_CUDA = TRUE or FALSE at compile-time

• task iteration – asynchronous, fork-join, kernel launching…

• flexible load balancing   

• “native” AMR/GMG solvers

• “native” async I/O along with support for HDF5 (WIP)
• format supported by Visit, Paraview, yt
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You shouldn’t have to use just one package:

Suppose your linear systems are too “hard” for geometric multigrid?
• Call hypre/petsc – as a solver for the full equation, or as a “bottom solver” in the GMG 

hierarchy

Suppose you want to experiment with different time-stepping schemes?
• AMReX is interoperable with SUNDIALS (see Time Integration section) – SUNDIALS time 

integrators understand MultiFABs … 

Suppose your equations are too painful to type out in stencil form?
• Use the new “CodeGen” python/sympy à AMReX translator to express – in ready-to-

compile code – the initial data and right hand side for your time evolution equation
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AMReX Core Mesh Data Hierarchy

• IntVect
– Dimension length array for indexing.

• Box
– Rectilinear region of index space (using IntVects) 

• BoxArray
– Union of Boxes at a given level

• FArrayBox (FAB)
– Data defined on a box (double, integer, complex, etc.)
– Stored in column-major order (Fortran)

• MultiFAB
– Collection of FArrayBoxes at a single level
– Contains a Distribution Map defining the relationship across MPI Ranks.
– Primary Data structure for AMReX mesh based work.

Simplest 
Structures

Most 
Complex 
Structures
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● Each MultiFab contains 
pointers to local grid data for 
one MPI rank + grid 
distribution metadata

● Loop over local data with the 
MultiFab Iterator.
For OpenMP, generate logical 
tiles for local grids.

How AMReX Loops over Mesh Data

● The Array4 contains a pointer and access operator(). 
The lambda captures it by value.

● The ParallelFor takes index space in a box and a 
C++ lambda function to call on each 3D index

● MPI-distributed data at all levels stored as a vector of 
AMReX MultiFab objects
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Built-In AMReX Features Enable Straightforward GPU 
Acceleration

● The ParallelFor takes index space in a box and a 
C++ lambda function to call on each 3D index.

● The Array4 contains a pointer and access operator(). 
Captured by value in the lambda.

● AMReX memory arena uses CUDA Unified Memory

● AMReX ParallelFor launches CUDA kernel

● All we had to do was label our “work” lambda function 
as a GPU function!
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Recall what we’ve seen in our examples…

• “AMR 101”: AMR for scalar advection
• Multilevel mesh data – fluid velocity on faces and tracer on cell centers
• Subcycling in time (or not) with refluxing (or not)
• Dynamic AMR 

• “AMR 102” : use a Poisson solve to compute incompressible flow around an obstacles then advect the 
particles in that flow field

• Single-level mesh data – fluid velocity on faces, EB obstacles defined by volume and area fractions
• Linear solver (geometric multigrid)
• Particle advection 

We didn’t have time for this one, but “AMReX-Pachinko” is an example of particles falling under gravity 
through an obstacle course, bouncing off the solid obstacles – here we see an example of particle-obstacle 
and particle-wall collisions

https://xsdk-project.github.io/MathPackagesTraining2021/lessons/amrex/ 

In summary …

https://xsdk-project.github.io/MathPackagesTraining/lessons/amrex/
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Take Away Messages

If you’re interested in learning more about AMREX:
• the software:  https://www.github.com/AMReX-Codes/amrex
• the documentation:  https://amrex-codes.github.io/amrex
• some movies based on AMReX:   https://amrex-codes.github.io/amrex/gallery.html

• Different problems require different spatial discretizations and different data structures – the most 
common are

• Structured mesh
• Unstructured mesh
• Particles (which can be combined with structured and/or unstructured meshes)

• Structured mesh doesn’t equal “just” flow in a box

• There are quite a few AMR software packages – they have several commonalities and a large number of 
differences, both in what functionality they support and on what architectures they are performant

• Interoperability is important!   See the next few sessions for how different packages can be used 
together.

https://www.github.com/AMReX-Codes/amrex
https://amrex-codes.github.io/amrex
https://amrex-codes.github.io/amrex/gallery.html
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A final takeaway …


