

Argonne Training Program on Extreme-Scale Computing

Direct Sparse Linear Solvers, Preconditioners

- SuperLU, STRUMPACK, with hands-on examples

ATPESC 2021

X. Sherry Li, Pieter Ghysels Lawrence Berkeley National Laboratory

August 10, 2021

Tutorial Content

Part 1. Sparse direct solvers: SuperLU and STRUMPACK (30 min)

- Sparse matrix representations
- Algorithms
 - Gaussian elimination, sparsity and graph, ordering, symbolic factorization
- Different organizations of elimination algorithms
- Parallelism exploiting sparsity (trees, DAGs)
 - Task scheduling, avoiding communication

Part 2. Rank-structured approximate factorizations: STRUMPACK (15 min)

Hierarchical matrices, Butterfly matrix

Part 3. Hands-on examples in SuperLU or STRUMPACK (15 min)

Algorithms: review of Gaussian Elimination (GE)

• First step of GE:

$$A = \begin{bmatrix} \alpha & w^{T} \\ v & B \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ v/\alpha & I \end{bmatrix} \cdot \begin{bmatrix} \alpha & w^{T} \\ 0 & C \end{bmatrix}$$
$$C = B - \frac{v \cdot w^{T}}{\alpha}$$

- Repeat GE on C
- Result in LU factorization (A = LU)
 - L lower triangular with unit diagonal, U upper triangular
- Then, x is obtained by solving two triangular systems with L and U, easier to solve

Strategies of solving sparse linear systems

- Iterative methods: (e.g., Krylov, multigrid, ...)
 - A is not changed (read-only)
 - Key kernel: sparse matrix-vector multiply
 - Easier to optimize and parallelize
 - Low algorithmic complexity, but may not converge
- Direct methods:
 - A is modified (factorized) : A = L*U
 - Harder to optimize and parallelize
 - Numerically robust, but higher algorithmic complexity
- Often use direct method to precondition iterative method
 - Solve an easier system: M⁻¹Ax = M⁻¹b

Exploit sparsity

- 1) Structural sparsity
 - Defined by {0, 1} structure (Graphs)
 - LU factorization ~ O(N²) flops, for many 3D discretized PDEs
- 2) Data sparsity (usually with approximation)
 - On top of 1), can find data-sparse structure in dense (sub)matrices (often involve approximation)
 - LU factorization ~ O(N polylog(N))

SuperLU: only structural sparsity

STRUMPACK: both structural and data sparsity

PDE discretization leads to sparse matrices

• Poisson equation in 2D (continuum)

$$\frac{\partial^2 u}{\partial x^2}(x, y) + \frac{\partial^2 u}{\partial y^2}(x, y) = f(x, y), \quad (x, y) \in \mathbb{R}$$
$$u(x, y) = g(x, y), \quad (x, y) \text{ on the boundary}$$

• Stencil equation (discretized)

$$4 \cdot u(i,j) - u(i-1,j) - u(i+1,j) - u(i,j-1) - u(i,j+1) = f(i,j)$$

-1

4

Fill-in in Sparse GE

Original zero entry A_{ij} becomes nonzero in L or U

– Red: fill-ins (Matlab: spy())

Minimum Degree order: NNZ = 207

General sparse solver

Fill-in: O(N log(N)) Flops: O(N^{3/2})

Fill-in in sparse LU

Store general sparse matrix: Compressed Row Storage (CRS)

- Store nonzeros row by row contiguously
- Example: N = 7, NNZ = 19
- **3** arrays:
 - Storage: NNZ reals, NNZ+N+1 integers

Many other data structures: "Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods", R. Barrett et al.

Distributed input interface

- **Matrices involved:**
 - A, B (turned into X) input, users manipulate them
 - L, U output, users do not need to see them
- A (sparse) and B (dense) are distributed by block rows

Distributed input interface

 Each process has a structure to store local part of A Distributed Compressed Row Storage

```
typedef struct {
    int_t nnz_loc; // number of nonzeros in the local submatrix
    int_t m_loc; // number of rows local to this processor
    int_t fst_row; // global index of the first row
    void *nzval; // pointer to array of nonzero values, packed by row
```

- int_t *colind; // pointer to array of column indices of the nonzeros
- int_t *rowptr; // pointer to array of beginning of rows in nzval[]and colind[]
 NRformat_loc;

Distributed Compressed Row Storage

SuperLU_DIST/FORTRAN/f_5x5.f90

A is distributed on 2 processors:

- nnz_loc = 5
- m_loc = 2
- fst_row = 0 // 0-based indexing
- $nzval = \{ s, u, u, l, u \}$
- colind = $\{0, 2, 4, 0, 1\}$
- rowptr = { 0, 3, 5 }

u

p

u

u

e

• nnz_loc = 7

P0

P1

S

lu

- $m_{loc} = 3$
- fst_row = 2 // 0-based indexing
- nzval = { l, p, e, u, l, l, r }
- colind = $\{1, 2, 3, 4, 0, 1, 4\}$
- rowptr = { 0, 2, 4, 7 }

Direct solver solution phases

- 1. Preprocessing: Reorder equations to minimize fill, maximize parallelism (~10% time)
 - Sparsity structure of L & U depends on A, which can be changed by row/column permutations (vertex re-labeling of the underlying graph)
 - Ordering (combinatorial algorithms; "NP-complete" to find optimum [Yannakis '83]; use heuristics)
- 2. Preprocessing: predict the fill-in positions in L & U (~10% time)
 - Symbolic factorization (combinatorial algorithms)
- 3. Preprocessing: Design efficient data structure for quick retrieval of the nonzeros
 - Compressed storage schemes
- 4. Perform factorization and triangular solutions (~80% time)
 - Numerical algorithms (F.P. operations only on nonzeros)
 - Usually dominate the total runtime

For sparse Cholesky and QR, the steps can be separate. For sparse LU with pivoting, steps 2 and 4 must be interleaved.

Numerical pivoting for stability

- Goal of pivoting is to control element growth in L & U for stability
 - For sparse factorizations, often relax the pivoting rule to trade with better sparsity and parallelism (e.g., threshold pivoting, static pivoting, . . .)
- Partial pivoting used in dense LU, sequential SuperLU and SuperLU_MT (GEPP)
 - Can force diagonal pivoting (controlled by diagonal threshold)
 - Hard to implement scalably for sparse factorization

Relaxed pivoting strategies:

- Static pivoting used in SuperLU_DIST (GESP)
 - Before factor, scale and permute A to maximize diagonal: $P_r D_r A D_c = A'$
 - During factor A' = LU, replace tiny pivots by $\sqrt{\varepsilon} ||A||$, w/o changing data structures for L & U
 - If needed, use a few steps of iterative refinement after the first solution
 - quite stable in practice
- Restricted pivoting

Can we reduce fill? -- various ordering algorithms

Reordering (= permutation of equations and variables)

(no fill after elimination)

Ordering to preserve sparsity : Minimum Degree

- Local greedy strategy: minimize upper bound on fill-in at each elimination step
- Algorithm: Repeat N steps:
 - Choose a vertex with minimum degree to eliminate
 - Update the remaining graph

Quotient graph [], approximate degree []

Ordering to preserve sparsity : Nested Dissection

- Model problem: discretized system Ax = b from certain PDEs, e.g., 5-point stencil on k x k grid, N = k²
 - Factorization flops: O(k^3) = O($N^{3/2}$)
- Theorem: ND ordering gives optimal complexity in exact arithmetic [George '73, Hoffman/Martin/Rose]

ND Ordering

- Generalized nested dissection [Lipton/Rose/Tarjan '79]
 - Global graph partitioning: top-down, divide-and-conqure
 - Best for large problems
 - Parallel codes available: ParMetis, PT-Scotch
 - First level

- $\circ~$ Recurse on A and B
- Goal: find the smallest possible separator S at each level
 - Multilevel schemes:
 - Chaco [Hendrickson/Leland `94], Metis [Karypis/Kumar `95]
 - Spectral bisection [Simon et al. `90-`95, Ghysels et al. 2019-]
 - Geometric and spectral bisection [Chan/Gilbert/Teng `94]

ND Ordering

2D mesh

A, with ND ordering

A, with row-wise ordering

Ordering for LU with non-symmetric patterns

- Can use a symmetric ordering on a symmetrized matrix
- Case of partial pivoting (serial SuperLU, SuperLU_MT):
 - Use ordering based on A^T*A
- Case of static pivoting (SuperLU_DIST):
 - Use ordering based on A^T+A
- Can find better ordering based solely on A, without symmetrization
 - Diagonal Markowitz [Amestoy/Li/Ng `06]
 - Similar to minimum degree, but without symmetrization
 - Hypergraph partition [Boman, Grigori, et al. `08]
 - Similar to ND on A^TA, but no need to compute A^TA

User-controllable options in SuperLU_DIST

For stability and efficiency, need to factorize a transformed matrix:

$P_c(P_r(D_rAD_c))P_c^T$

"Options" fields with C enum constants:

- Equil: { NO, **YES** }
- RowPerm: { NOROWPERM, LargeDiag_MC64, LargeDiag_HWPM, MY_PERMR }
- ColPerm: { NATURAL, MMD_ATA, MMD_AT_PLUS_A, COLAMD, METIS_AT_PLUS_A, PARMETIS, ZOLTAN, MY_PERMC }

Call set_default_options_dist(&options) to set default values.

Algorithm variants, codes depending on matrix properties

Matrix properties	Supernodal (updates in-place)	Multifrontal (partial updates passing around)
Symmetric Pos. Def.: Cholesky LL' indefinite: LDL'	symPACK (DAG)	MUMPS (tree)
Symmetric pattern, non-symmetric value	PARDISO (DAG)	MUMPS (tree) STRUMPACK (binary tree)
Non-symmetric everything	SuperLU (DAG) PARDISO (DAG)	UMFPACK (DAG)

- Remarks:
 - SuperLU, MUMPS, UMFPACK can use any sparsity-reducing ordering
 - STRUMPACK can only use nested dissection (restricted to binary tree)
- Survey of sparse direct solvers (codes, algorithms, parallel capability): https://portal.nersc.gov/project/sparse/superlu/SparseDirectSurvey.pdf

Sparse LU: two algorithm variants ... depending on how updates are accumulated Tree based DAG based Multifrontal: STRUMPACK, MUMPS Supernodal: SuperLU

 $S^{(j)} \leftarrow ((A^{(j)} - D^{(k1)}) - D^{(k2)}) - ...) \qquad S^{(j)} \leftarrow A^{(j)} - (..(D^{(k1)} + D^{(k2)}) + ...)$

Supernode

Exploit dense submatrices in the factors

- Can use Level 3 BLAS
- Reduce inefficient indirect addressing (scatter/gather)
- Reduce graph traversal time using a coarser graph

Distributed L & U factored matrices (internal to SuperLU)

- 2D block cyclic layout specified by user.
- Rule: process grid should be as square as possible.
 - Or, set the row dimension (*nprow*) slightly smaller than the column dimension (*npcol*).
 - For example: 2x3, 2x4, 4x4, 4x8, etc.

Distributed separator-tree-based parallelism (internal to STRUMPACK)

- Supernode = separator = frontal matrix
- Map sub-tree to sub-process grid
 - Proportional to estimated work
- ScaLAPACK 2D block cyclic layout at each node
- Multi-threaded ScaLAPACK through system MT-BLAS
- Allow idle processes for better communication
 - e.g.: 2x3 process grid is better than 1x7

Comparison of LU time from 3 direct solvers

- Pure MPI on 8 nodes Intel Ivy Bridge, 192 cores (2x12 cores / node), NERSC Edison
- METIS ordering

SuperLU_DIST recent improvements

- GPU
- Communication avoiding & hiding

SpLU	2D algorithm (baseline)	+ GPU off-load (master) 3x	
	 3D Comm-Avoiding 27x @ 32,000 cores 	3.5x @ 4096 Titan nodes (Version-7)	
SpTRSV	2D algorithm (baseline)	 GPU (gpu_trisolve) 8.5x @1 Summit GPU 	1-sided MPI (trisolve-fompi) → 2.4x @12,000 KNL cores
	 3D Comm-Avoiding 7x @ 12,000 cores 		

Tips for Debugging Performance

- Check sparsity ordering
- Diagonal pivoting is preferable
 - E.g., matrix is diagonally dominant, . . .
- Need good BLAS library (vendor, OpenBLAS, ATLAS)
 - May need adjust block size for each architecture
 - (Parameters modifiable in routine sp_ienv())
 - Larger blocks better for uniprocessor
 - Smaller blocks better for parallellism and load balance
- **GPTune:** ML algorithms for selection of best parameters
 - https://github.com/gptune/GPTune/

GPTune: multi-objective autotuning for SuperLU_DIST

https://github.com/gptune/GPTune/

- $\mathbb{IS} = [matrix name], \mathbb{PS} = [COLPERM, NSUP, NREL, nprow],$
- Multi-objective: OS = [time, memory]
 Single-objective: OS = [time] or [memory]
- Returns multiple tuning parameter configurations.
- Pareto optimal: best time and memory tradeoff (no other PS points dominate over this point in both objectives)

Algorithm complexity (in bigO sense)

- Dense LU: O(N³)
- Model PDEs with regular mesh, nested dissection ordering

	2D problems N = k ²			3D problems N = k ³		
	Factor flops	Solve flops	Memory	Factor flops	Solve flops	Memory
Exact sparse LU	N ^{3/2}	N log(N)	N log(N)	N ²	N ^{4/3}	N ^{4/3}
STRUMPACK with low-rank compression	Ν	Ν	Ν	N ^α polylog(N) (α < 2)	N log(N)	N log(N)

Software summary

- SuperLU: conventional direct solver for general unsymmetric linear systems.
 (X.S. Li, J. Demmel, J. Gilbert, L. Grigori, Y. Liu, P. Sao, M. Shao, I. Yamazaki)
 - O(N²) flops, O(N^{4/3}) memory for typical 3D PDEs.
 - C, hybrid MPI+ OpenMP + CUDA; Provide Fortran interface.
 - Real, complex.
 - Componentwise error analysis and error bounds (guaranteed solution accuracy), condition number estimation.
 - http://portal.nersc.gov/project/sparse/superlu/
- STRUMPACK: (inexact) direct solver, preconditioner.
 (P. Ghysels, L. Claus, Y. Liu, G. Chavez, C. Gorman, F.-H. Rouet, X.S. Li)
 - O(N^{4/3} logN) flops, O(N) memory for 3D elliptic PDEs.
 - C++, hybrid MPI + OpenMP + CUDA; Provide Fortran interface.
 - Real, complex.
 - http://portal.nersc.gov/project/sparse/strumpack/

References

- Short course, "Factorization-based sparse solvers and preconditioners", 4th Gene Golub SIAM Summer School, 2013.<u>https://archive.siam.org/students/g2s3/2013/index.html</u>
 - 10 hours lectures, hands-on exercises
 - Extended summary: <u>http://crd-legacy.lbl.gov/~xiaoye/g2s3-summary.pdf</u> (in book "Matrix Functions and Matrix Equations", https://doi.org/10.1142/9590)
- SuperLU: portal.nersc.gov/project/sparse/superlu
- STRUMPACK: portal.nersc.gov/project/sparse/strumpack/
- ButterflyPACK: https://github.com/liuyangzhuan/ButterflyPACK

Rank-structured Approximate Factorizations in STRUMPACK

- "inexact" direct solvers
- strong preconditioners

SuperU_DIST Hands-on session

SuperLU_DIST with MFEM

xsdk-project.github.io/MathPackagesTraining2021/lessons/superlu_mfem/

Solve steady-state convection-diffusion equations

Get 1 compute node: qsub -I -n 1 -t 10 -A ATPESC2021 -q training

cd track-5-numerical/superlu/superlu_mfem_dist

- run 1: ./convdiff | tee run1.out
- run 2: ./convdiff --velocity 1000 | tee run2.out
- run 3: ./convdiff --velocity 1000 -slu -cp 0 | tee run3.out
- run 4: ./convdiff --velocity 1000 -slu -cp 2 | tee run4.out
- run 5: ./convdiff --velocity 1000 -slu -cp 4 | tee run5.out
- run 5.5: mpiexec -n 1 ./convdiff --refine 3 --velocity 1000 -slu -cp 4 | tee run55.out
- run 6: mpiexec -n 12 ./convdiff --refine 3 --velocity 1000 -slu -cp 4 | tee run6.out
- run 7: mpiexec -n 12 ./convdiff --refine 3 --velocity 1000 -slu -cp 4 -2rhs | tee run7.out

Summary of SuperLU_DIST with MFEM

xsdk-project.github.io/MathPackagesTraining2021/lessons/superlu_mfem/

- Convection-Diffusion equation (steady-state): convdiff.cpp
- GMRES iterative solver with BoomerAMG preconditioner
 - \$./convdiff (default velocity = 100)
 - \$./convdiff --velocity 1000 (no convergence)
- Switch to SuperLU direct solver
 - \$./convdiff -slu --velocity 1000
- Experiment with different orderings: --slu-colperm (you see different number of nonzeros in L+U)
 - 0 natural (default)
 - 1 mmd-ata (minimum degree on graph of A^T*A)
 - 2 mmd_at_plus_a (minimum degree on graph of A^T+A)
 - 3 colamd
 - 4 metis_at_plus_a (Metis on graph of A^T+A)
 - 5 parmetis (ParMetis on graph of A^T+A)
- Lessons learned
 - Direct solver can deal with ill-conditioned problems.
 - Performance may vary greatly with different elimination orders.

SuperLU_DIST MPI + GPU track-5-numerical/superlu/EXAMPLE

See README file (e.g. mpiexec -n 8 ./pddrive3d -r 2 -c 2 -d 2 stomach.rua) \$ export OMP_NUM_THREADS=1

- run 1: export SUPERLU_ACC_OFFLOAD=0; mpiexec -n 1 pddrive3d stomach.rua | tee run1.out
- run 2: export SUPERLU_ACC_OFFLOAD=0; mpiexec -n 2 pddrive3d -c 2 stomach.rua | tee run2.out
 +GPU:
- run 3: export SUPERLU_ACC_OFFLOAD=1; mpiexec -n 1 pddrive3d stomach.rua | tee run3.out
- run 4: export SUPERLU_ACC_OFFLOAD=1; mpiexec -n 2 pddrive3d -c 2 stomach.rua | tee run4.out

Factorization seconds	no GPU	w/ GPU
MPI = 1	23.7	8.3
MPI = 2	14.7	6.7

SuperLU_DIST other examples track-5-numerical/superlu/EXAMPLE

See README file (e.g. mpiexec -n 12 ./pddrive1 -r 3 -c 4 stomach.rua)

- pddrive1.c: Solve the systems with same A but different right-hand side at different times.
 - Reuse the factored form of A.
- pddrive2.c: Solve the systems with the same pattern as A.
 - Reuse the sparsity ordering.
- pddrive3.c: Solve the systems with the same sparsity pattern and similar values.
 - Reuse the sparsity ordering and symbolic factorization.
- pddrive4.c: Divide the processes into two subgroups (two grids) such that each subgroup solves a linear system independently from the other.

Block Jacobi preconditioner

track-5-numerical/superlu/EXAMPLE

Four input matrices:

- g4.rua (16 dofs)
- g20.rua (400 dofs)
- big.rua (4960 dofs)
- stomach.rua (213k dofs)

• Can get many other test matrices at SuiteSparse https://sparse.tamu.edu

Thank you!

exascaleproject.org

Rank Structured Solvers for Dense Linear Systems

Hierarchical Matrix Approximation

 \mathcal{H} -matrix representation [1]

• Data-sparse, rank-structured, compressed

Hierarchical/recursive 2×2 matrix blocking, with blocks either:

- Low-rank: $A_{IJ} \approx UV^{\top}$
- Hierarchical
- Dense (at lowest level)

Use cases:

- Boundary element method for integral equations
- Cauchy, Toeplitz, kernel, covariance, ... matrices
- Fast matrix-vector multiplication
- *H*-LU decomposition
- Preconditioning

Admissibility Condition

- Row cluster σ
- Column cluster τ
- $\sigma \times \tau$ is compressible \Leftrightarrow

 $\max(\operatorname{diam}(\sigma),\operatorname{diam}(\tau)) \leq \eta$ $dist(\tau, \sigma)$

- $\mathrm{diam}(\sigma)$: diameter of physical domain corresponding to σ
- $\operatorname{dist}(\sigma,\tau)$: distance between σ and τ
- Weaker interaction between clusters leads to smaller ranks
- Intuitively larger distance, greater separation, leads to weaker interaction
- Need to cluster and order degrees of freedom to reduce ranks

Hackbusch, W., 1999. A sparse matrix arithmetic based on *H*-matrices. part i: Introduction to *H*-matrices. Computing, 62(2), pp.89-108.

low rank

ρ

 σ

HODLR: Hierarchically Off-Diagonal Low Rank

Weak admissibility

```
\sigma \times \tau is compressible \Leftrightarrow \sigma \neq \tau
```

Every off-diagonal block is compressed as low-rank, even interaction between neighboring clusters (no separation)

Compared to more general \mathcal{H} -matrix

- Simpler data-structures: same row and column cluster tree
- More scalable parallel implementation
- Good for 1D geometries, e.g., boundary of a 2D region discretized using BEM or 1D separator
- Larger ranks

HSS: Hierarchically Semi Seperable

- Weak admissibility
- Off-diagonal blocks

$$A_{\sigma,\tau} \approx U_{\sigma} B_{\sigma,\tau} V_{\tau}^{\top}$$

Nested bases

$$U_{\sigma} = \begin{bmatrix} U_{\nu_1} & 0\\ 0 & U_{\nu_2} \end{bmatrix} \hat{U}_{\sigma}$$

with ν_1 and ν_2 children of σ in the cluster tree.

At lowest level

$$U_{\sigma} \equiv \hat{U}_{\sigma}$$

- Store only \hat{U}_{σ} , smaller than U_{σ}
- Complexity $\mathcal{O}(N) \leftrightarrow \mathcal{O}(N \log N)$ for HODLR
- HSS is special case of $\mathcal{H}^2 {:} \ \mathcal{H}$ with nested bases

$$\begin{bmatrix} D_0 & U_0 B_{0,1} V_1^* \\ U_1 B_{1,0} V_0^* & D_1 \\ U_5 B_{5,2} V_2^* & D_3 & U_3 B \\ U_4 B_{4,3} V_3^* & D_4 \end{bmatrix}$$

 $U_3 B_{3,4} V_4^*$

 D_A

HSS: Hierarchically Semi Seperable

- Weak admissibility
- Off-diagonal blocks

$$A_{\sigma,\tau} \approx U_{\sigma} B_{\sigma,\tau} V_{\tau}^{\top}$$

Nested bases

$$U_{\sigma} = \begin{bmatrix} U_{\nu_1} & 0\\ 0 & U_{\nu_2} \end{bmatrix} \hat{U}_{\sigma}$$

with ν_1 and ν_2 children of σ in the cluster tree.

At lowest level

$$U_{\sigma} \equiv \hat{U}_{\sigma}$$

- Store only \hat{U}_{σ} , smaller than U_{σ}
- Complexity $\mathcal{O}(N) \leftrightarrow \mathcal{O}(N \log N)$ for HODLR
- HSS is special case of $\mathcal{H}^2 {:}~ \mathcal{H}$ with nested bases

$$\begin{bmatrix} D_0 & U_0 B_{0,1} V_1^* \\ U_1 B_{1,0} V_0^* & D_1 \\ \begin{bmatrix} U_3 & 0 \\ 0 & U_4 \end{bmatrix} \hat{U}_5 B_{5,2} \hat{V}_2^* \begin{bmatrix} V_0^* & 0 \\ 0 & V_1^* \end{bmatrix}$$

$$\begin{bmatrix} U_0 & 0 \\ 0 & U_1 \end{bmatrix} \hat{U}_2 B_{2,5} \hat{V}_5^* \begin{bmatrix} V_3^* & 0 \\ 0 & V_4^* \end{bmatrix} \\ D_3 & U_3 B_{3,4} V_4^* \\ U_4 B_{4,3} V_3^* & D_4 \end{bmatrix}$$

BLR: Block Low Rank [1, 2]

- Flat partitioning (non-hierarchical)
- Weak or strong admissibility
- Larger asymptotic complexity than \mathcal{H} , HSS, ...
- Works well in practice

Mary, T. (2017). Block Low-Rank multifrontal solvers: complexity, performance, and scalability. (Doctoral dissertation).

Amestoy, Patrick, et al. (2015). *Improving multifrontal methods by means of block low-rank representations*. SISC 37.3 : A1451-A1474.

Data-Sparse Matrix Representation Overview

- Partitioning: hierarchical (*H*, HODLR, HSS) or flat (BLR)
- Admissibility: weak (HODLR, HSS) or strong $(\mathcal{H}, \mathcal{H}^2)$
- Bases: nested (HSS, $\mathcal{H}^2)$ or not nested (HODLR, $\mathcal{H},$ BLR)

Fast Multipole Method [1]

Particle methods like Barnes-Hut and FMM can be interpreted algebraically using hierarchical matrix algebra

- Barnes-Hut $\mathcal{O}(N \log N)$
- Fast Multipole Method $\mathcal{O}(N)$

Barnes-Hut

FMM

Greengard, L., and Rokhlin, V. *A fast algorithm for particle simulations.* Journal of computational physics 73.2 (1987): 325-348.

Butterfly Decomposition [1]

Complementary low rank property: sub-blocks of size $\mathcal{O}(N)$ are low rank:

Multiplicative decomposition:

- Multilevel generalization of low rank decomposition
- Based on FFT ideas, motivated by high-frequency problems

Michielssen, E., and Boag, A. *Multilevel evaluation of electromagnetic fields for the rapid solution of scattering problems.* Microwave and Optical Technology Letters 7.17 (1994): 790-795.

HODBF: Hierarchically Off-Diagonal Butterfly

- HODLR but with low rank replaced by Butterfly decomposition
- Reduces ranks of large off-diagonal blocks

Low Rank Approximation Techniques

Traditional approaches need entire matrix

- Truncated Singular Value Decomposition (TSVD): $A \approx U \Sigma V^T$
 - Optimal, but expensive
- Column Pivoted QR: $AP \approx QR$
 - Less accurate than TSVD, but cheaper

Adaptive Cross Approximation

- No need to compute every element of the matrix
- Requires certain assumptions on input matrix
- Left-looking LU with rook pivoting

Randomized algorithms [1]

- Fast matrix-vector product: $S = A\Omega$ Reduce dimension of A by random projection with Ω
- E.g., operator is sparse or rank structured, or the product of sparse and rank structured
- Halko, N., Martinsson, P.G., Tropp, J.A. (2011). *Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions.* SIAM Review, 53(2), 217-288.

Approximate Multifrontal Factorization

Sparse Multifrontal Solver/Preconditioner with Rank-Structured Approximations

 \boldsymbol{L} and \boldsymbol{U} factors, after nested-dissection ordering, compressed blocks in blue

Only apply rank structured compression to largest fronts (dense sub-blocks), keep the rest as regular dense

High Frequency Helmholtz and Maxwell

Regular $k^3 = N$ grid, fixed number of discretization points per wavelength

Indefinite Maxwell, using MFEM

High Frequency Helmholtz and Maxwell

Sparse multifrontal solver with HODBF compression

Operations for factor and solve phases, $\varepsilon = 10^{-3}. \label{eq:electron}$

Memory usage for the sparse triangular factors.

GMRES convergence for k = 200.

- Highly oscillatory problems are hard for iterative solvers
- Typically solved with sparse direct solvers, but scale as $\mathcal{O}(N^2)$

Software: ButterflyPACK

- Butterfly
- Hierarchically Off-Diagonal Low Rank (HODLR)
- Hierarchically Off-Diagonal Butterfly (HODBF)
- Hierarchical matrix format (*H*)
 - Limited parallelism
- Fast compression, using randomization
- Fast multiplication, factorization & solve
- Fortran2008, MPI, OpenMP

https://github.com/liuyangzhuan/ButterflyPACK

Software: STRUMPACK STRUctured Matrix PACKage

- Fully algebraic solvers/preconditioners
- Sparse direct solver (multifrontal LU factorization)
- Approximate sparse factorization preconditioner
- Dense
 - HSS: Hierarchically Semi-Separable
 - BLR: Block Low Rank (sequential only)
 - ButterflyPACK integration/interface:
 - Butterfly
 - HODLR
 - HODBF
- C++, MPI + OpenMP + CUDA, real & complex, 32/64 bit integers
- BLAS, LAPACK, Metis
- Optional: MPI, ScaLAPACK, ParMETIS, (PT-)Scotch, cuBLAS/cuSOLVER, SLATE, ZFP

https://github.com/pghysels/STRUMPACK https://portal.nersc.gov/project/sparse/strumpack/master/

Other Available Software

HiCMA	https://github.com/ecrc/hicma
HLib	http://www.hlib.org/
HLibPro	https://www.hlibpro.com/
H2Lib	http://www.h2lib.org/
НАСАрК	https://github.com/hoshino-UTokyo/hacapk-gpu
MUMPS PaStiX	http://mumps.enseeiht.fr/ https://gitlab.inria.fr/solverstack/pastix
ExaFMM	http://www.bu.edu/exafmm/

See also:

https://github.com/gchavez2/awesome_hierarchical_matrices

STRUMPACK Hands-On Session

EXASCALE COMPUTING PROJECT

HODLR Compression of Toeplitz Matrix $T(i, j) = \frac{1}{1+|i-j|}$

track-5-numerical/rank_structured_strumpack/build/testHODLR

- See track-5-numerical/rank_structured_strumpack/README
- Get a compute node:

qsub -I -n 1 -t 30 -A ATPESC2021 -q training

• Set OpenMP threads:

export OMP_NUM_THREADS=1

• Run example:

mpiexec -n 1 ./build/testHODLR 20000

- With description of command line parameters: mpiexec -n 1 ./build/testHODLR 20000 --help
- Vary leaf size (smallest block size) and tolerance:

mpiexec -n 1 ./build/testHODLR 20000 --hodlr_rel_tol 1e-4 --hodlr_leaf_size 16
mpiexec -n 1 ./build/testHODLR 20000 --hodlr_rel_tol 1e-4 --hodlr_leaf_size 128

• Vary number of MPI processes:

mpiexec -n 12 ./build/testHODLR 20000 --hodlr_rel_tol 1e-8 --hodlr_leaf_size 16
mpiexec -n 12 ./build/testHODLR 20000 --hodlr_rel_tol 1e-8 --hodlr_leaf_size 128

Solve a Sparse Linear System with Matrix pde900.mtx

track-5-numerical/rank_structured_strumpack/build/testMMdouble{MPIDist}

- See track-5-numerical/rank_structured_strumpack/README
- Get a compute node:

```
qsub -I -n 1 -t 30 -A ATPESC2021 -q training
```

- Set OpenMP threads: export OMP_NUM_THREADS=1
- Run example:

mpiexec -n 1 ./build/testMMdouble pde900.mtx

- With description of command line parameters: mpiexec -n 1 ./build/testMMDouble pde900.mtx --help
- Enable/disable GPU off-loading: mpiexec -n 1 ./build/testMMDouble pde900.mtx --sp_disable_gpu
- Vary number of MPI processes:

mpiexec -n 1 ./build/testMMdouble pde900.mtx
mpiexec -n 12 ./build/testMMdoubleMPIDist pde900.mtx

 Other sparse matrices, in matrix market format: NIST Matrix Market: https://math.nist.gov/MatrixMarket SuiteSparse: http://faculty.cse.tamu.edu/davis/suitesparse.html

Solve 3D Poisson Problem

track-5-numerical/rank_structured_strumpack/build/testPoisson3d{MPIDist}

- See track-5-numerical/rank_structured_strumpack/README
- Get a compute node: qsub -I -n 1 -t 30 -A ATPESC2021 -q training
- Set OpenMP threads: export OMP_NUM_THREADS=1
- Solve 40^3 Poisson problem:

```
mpiexec -n 1 ./build/testPoisson3d 40 --help --sp_disable_gpu
```

• Enable BLR compression (sequential):

mpiexec -n 1 ./build/testPoisson3d 40 --sp_compression BLR --help mpiexec -n 1 ./build/testPoisson3d 40 --sp_compression BLR --blr_rel_tol 1e-2 mpiexec -n 1 ./build/testPoisson3d 40 --sp_compression BLR --blr_rel_tol 1e-4 mpiexec -n 1 ./build/testPoisson3d 40 --sp_compression BLR --blr_leaf_size 128 mpiexec -n 1 ./build/testPoisson3d 40 --sp_compression BLR --blr_leaf_size 256

• Parallel, with HSS/HODLR compression:

