
ATPESC Numerical Software Track

Putting it All Together:
(the Sociology of) Using Numerical Packages In Practice

Presented to
ATPESC 2021 Participants

Ann Almgren
Deputy Director, ECP Block-Structured AMR Co-Design Center

Date 08/10/2021

ATPESC 2021, August 2-13, 20212

Quantific
ation

D
is

cr
et

iz
at

io
n

Implementation Data Assim
ila

tio
n

Optimization

Design, Control,
Data A

nalysis

Problem description

Conceptual model

Algorithmic model

Mathematical model

Simulation

Experiment

Idealization

Developing
 a CSE model

Model
validation

Model
verification

Parameter
identification

New Insight

HPC
model

Software

Data

Here is one view of
the “CSE cycle”:

ATPESC 2021, August 2-13, 20213

Quantific
ation

D
is

cr
et

iz
at

io
n

Implementation Data Assim
ila

tio
n

Optimization

Design, Control,
Data A

nalysis

Problem description

Conceptual model

Algorithmic model

Mathematical model

Simulation

Experiment

Idealization

Developing
 a CSE model

Model
validation

Model
verification

Parameter
identification

New Insight

HPC
model

Software

Data
None of us can
actually do it all

Here is one view of
the “CSE cycle”:

ATPESC 2021, August 2-13, 20214

Quantific
ation

D
is

cr
et

iz
at

io
n

Implementation Data Assim
ila

tio
n

Optimization

Design, Control,
Data A

nalysis

Problem description

Conceptual model

Algorithmic model

Mathematical model

Simulation

Experiment

Idealization

Developing
 a CSE model

Model
validation

Model
verification

Parameter
identification

New Insight

HPC
model

Software

Data

So where do you
want to spend
your time?

None of us can
actually do it all

Here is one view of
the “CSE cycle”:

ATPESC 2021, August 2-13, 20215

Key steps of simulation science application development
• Physical model

– Expertise may be very domain-specific

• Mathematical model
– Expertise may require detailed mathematical knowledge

• Discretization and algorithm development
– Expertise includes knowing regimes of applicability, stability, approximation,

error bounds

• Parallel implementation
– Expertise in hardware, software stack and parallel programming models

ATPESC 2021, August 2-13, 20216

That’s a lot of expertise!

Very few of us are experts in all of these areas. So how do we
optimize the insight/impact of our computational science?

• Team science – in an ideal world we could work in teams that have
all the relevant expertise within one team

• That’s not always possible –so one way to broadly share expertise is
through software libraries
– Expertise in discretization and algorithm development
– Expertise in hardware, software stack and parallel programming models

ATPESC 2021, August 2-13, 20217

In the short-term we often prefer to do things ourselves

Ñ2T = 0 Î W
T(0) = 180o

T(1) = 0o

Hot
water
bath

Cold
water
bath

For the 1-D heat equation why bother learning a software package?

ATPESC 2021, August 2-13, 20218

We can prototype in matlab, build simple serial implementations,
and demonstrate proof-of-concept.

This can be good:

• New algorithms are often designed and validated in this mode.

• Sometimes writing your own version of a known technology (e.g. multigrid solver) is
worth it -- “learning by doing”

This can be bad:

• Our own implementations are more likely to lack generality, be inefficient or even
buggy.

• How much time do we spend “reinventing the wheel?”

• Do we impact anyone/anything beyond our own immediate application?

Sometimes simple is good

ATPESC 2021, August 2-13, 20219

We can prototype in matlab, build simple serial implementations,
and demonstrate proof-of-concept.

This can be good:

• New algorithms are often designed and validated in this mode.

• Sometimes writing your own version of a known technology (e.g. multigrid solver) is
worth it -- “learning by doing”

This can be bad:

• Our own implementations are more likely to lack generality, be inefficient or even
buggy.

• How much time do we spend “reinventing the wheel?”

• Do we impact anyone/anything beyond our own immediate application?

Sometimes simple is good

ATPESC 2021, August 2-13, 202110

Software libraries/frameworks/tools
are made by real people.

The people aspect matters

• Software developers know a lot about their product

• But they don’t necessarily know exactly what you need

Communication / Collaboration is an important part of the process
it’s good for the developer as well as the user!

The “supply” side
of software libraries

ATPESC 2021, August 2-13, 202111

Software libraries/frameworks/tools
are made by real people.

The people aspect matters

• Software developers know a lot about their product

• But they don’t necessarily know exactly what you need

Communication / Collaboration is an important part of the process
it’s good for the developer as well as the user!

The “supply” side
of software libraries

ATPESC 2021, August 2-13, 202112

Why don’t people “just” use software libraries
Lack of knowledge – how do you know whether the right tool even exists?

And if it exists: Where do you find it? How do you use it? Will it work with your
other tools?

AKA: “package fatigue”

ATPESC 2021, August 2-13, 202113

Why don’t people “just” use software libraries
Frustration! It can be really frustrating to not have the tool do what you want as
well as you want. And how do you tell whether it’s you or the tool?

So how can you find the right tool – if it exists -
and how do you learn how to use it correctly?

ATPESC 2021, August 2-13, 202114

Ideal solution: a “toolbox” of compatible (interoperable)
tools that “just work”

• This is exactly what the
software developers are
working towards

• But it takes time and resources

• The developer/user interaction
can be a win-win

ATPESC 2021, August 2-13, 202115

On a practical level, there are trade-offs

Advantages

• Key challenges addressed well
– Portable, Performant, Scalable,

Interoperable

• Numerics are well tested/vetted
• Functionality is often more general than

you would have made yourself
• More science, more impact; less time

writing/debugging software
• Become part of a community – for

collaboration and help

ATPESC 2021, August 2-13, 202116

On a practical level, there are trade-offs

Challenges

• Something new to learn
• Hard to predict show-stoppers
• Not always plug-n-play
• Trusting the work of others
• Overhead of collaborating
• Funding priorities

ATPESC 2021, August 2-13, 202117

How do we tip the balance?
Challenge

Something new to learn
Hard to predict show-stoppers
Not always plug-n-play
Trusting others
Overhead of collaborating
Funding priorities

Mitigation

Many examples and documentation
Engage package developers early
Submit build issues
Identify or develop tests
Builds relationships
Add to the package yourself

ATPESC 2021, August 2-13, 202118

How do we tip the balance?
Challenge

Something new to learn
Hard to predict show-stoppers
Not always plug-n-play
Trusting others
Overhead of collaborating
Funding priorities

Mitigation

Many examples and documentation
Engage package developers early
Submit build issues
Identify or develop tests
Builds relationships
Add to the package yourself

The point of open source is to encourage use
Package teams want users to make progress.
If package is missing a crucial feature, ask.

ATPESC 2021, August 2-13, 202119

From an SC19 panel: Cutting-Edge HPC is a moving target

• What role will reusable libraries and tools play on future systems and how is the role changed from the past?
– Increasing role … there will be fewer and fewer opportunities to do meaningful simulations “from scratch”
– Trade-offs between standardization and innovation

• What algorithmic and software ecosystem innovations are emerging and needed to enable broad usability of
exascale and post-exascale platforms?
– We – users and developers -- still spend far too much time struggling with incompatible compiler versions, software

package versions, gaps in interoperability, etc…
– Finite resources for testing – we – users and developers -- need standardized CI / regression testing!

• Facilities *must* be involved in this

– Package managers, container computing, etc are a step in the right direction … but not soup yet

• In comparison to today, how will exascale and post-exascale software environments be?
– GPUs have raised the bar … easier to be 10x slower than 10x faster
– More heterogeneous, harder to get optimal performance, increasing need for:

• Specialization

• Effective communication between specialists

