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How to build your test suite?

• Two “levels”
– Nightly / scheduled testing 

• May be long running
• Provide comprehensive coverage

– Continuous integration
• Quick diagnosis of error

• A mix of different granularities 
works well
– Unit tests for isolating component or 

sub-component level faults 
– Integration tests with simple to complex 

configuration and system level
– Restart tests

• Rules of thumb
– Simple 
– Enable quick pin-pointing 

Useful resources https://ideas-
productivity.org/resources/howtos/

https://ideas-productivity.org/resources/howtos/
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Why not always use the most stringent testing?
• Effort spent in devising running and maintaining test suite is a tax on team 

resources
• When the tax is too high…

– Team cannot meet code-use objectives

• When is the tax is too low…
– Necessary oversight not provided
– Defects in code sneak through 

• Team Meeting! Evaluate project needs:
– Objectives: expected use of the code
– Lifecycle stage: new or production or refactoring
– Team: size and degree of heterogeneity
– Lifetime: one off or ongoing production
– Complexity: modules and their interactions

rank 3

rank 2

halo cells
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Additional Notes: Good Testing Practices

• Verify Code coverage
• Must have consistent policy on dealing with failed tests

– Issue tracking
• How quickly does it need to be fixed?
• Who is responsible for fixing it?

• Someone should be watching the test suite
• When refactoring or adding new features, run a regression suite before check in

– Add new regression tests or modify existing ones for the new features

• Code review before releasing test suite is useful
– Another person may spot issues you didn’t
– Incredibly cost-effective
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Example 1: Test Development For a New Code

• Development of tests and diagnostics goes hand-
in-hand with code development

– Compare against simpler analytical or semi-analytical 
solutions

– Build granularity into testing
– Use scaffolding ideas to build confidence 
– Always inject errors to verify that the test is working
– Non-trivial to devise good tests, but extremely 

important
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There may not be existing tests

• Isolate a small area of the code
• Dump a useful state snapshot
• Build a test driver

– Start with only the files in the area
– Link in dependencies

– Copy if any customizations needed

• Read in the state snapshot
• Restart from the saved state
• Verify correctness

– Always inject errors to verify that the test is working

state

driver

Example 2:
Test Development For a Legacy Code
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Example 3: Structuring Tests to pinpoint bugs

• Bottom-up picture (shim if needed)
– Components can be exercised against 

known simpler applications
– Same applies to combination of 

components

• Build a scaffolding of verification 
tests to gain confidence

Unit test

Unit test

Mocked up 
dependency

Real dependency

Unit test
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Example 3: Structured Testing
Unit test for Grid halo cell fill
• Verification of guard/ghost/halo  

cell fill
• Initialize field on interior cells 

(red)
• Apply guard cell fill
• Check for equivalence with 

known fill pattern

gc test Eos test

Next, build an EOS Test – is E(V,T) consistent with P(V,T)?
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Unit test for Hydrodynamics
• Sedov blast wave
• High pressure at the center
• Shock moves out spherically
• FLASH with AMR and hydro
• Known analytical solution

Though it exercises mesh, hydro and eos, if mesh and 
eos are verified first, then this test verifies hydro 

gc test Eos test

Hydro test

More testing needed for Grid using AMR
Flux correction and regridding

Example 3: Structured Testing
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For AMR, correct behavior of flux conservation and regridding
should also be verified.

Reason about correctness for testing Flux correction and regridding

IF Guardcell fill and EOS unit tests passed
• Run Hydro without AMR

– If failed fault is in Hydro

• Run Hydro with AMR, but no dynamic refinement
– If failed fault is in flux correction

• Run Hydro with AMR and dynamic refinement
– If failed fault is in regridding

Example 3: Structured Testing
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Example 4: Coverage Matrix (physics vs. functionalities)

• Code coverage 
tools necessary but 
not sufficient 

• Do not give any 
information about 
interoperability • Map your tests and examples – what do they do?

• Follow the order
– All unit tests – including full module tests (e.g. CL)
– Tests sensitive to perturbations (e.g. SV)
– Most stringent tests for solvers (e.g. WD, PT)
– Least complex test to cover remaining spots (Aha!)

First line of defense – code coverage tools  
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Takeaways

• Context: understand testing needs and costs
• Devise tests to enable quick pinpointing of errors through reasoning about their 

behavior
• test at various granularities – bottom-up (UNIT/verification) through top-down 

(integration/validation)
• Tests at various complexities – CI vs. regression
• Maintain a holistic validation strategy: think globally, act locally
…….Questions ?
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