
exascaleproject.org

See slide 2 for
license details

Testing Complex Software

David M. Rogers
Oak Ridge National Laboratory

Software Productivity and Sustainability track, ATPESC 2021

Contributors: Anshu Dubey (ANL), Rinku Gupta (ANL), Mark C. Miller
(LLNL), David M. Rogers (ORNL)

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Rinku K. Gupta, and David M.

Rogers, Software Productivity and Sustainability track, in Argonne Training Program on Extreme-Scale
Computing (ATPESC), online, 2021. DOI: 10.6084/m9.figshare.15130590

• Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial…

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.15130590

3

How to build your test suite?

• Two “levels”
– Nightly / scheduled testing

• May be long running
• Provide comprehensive coverage

– Continuous integration
• Quick diagnosis of error

• A mix of different granularities
works well
– Unit tests for isolating component or

sub-component level faults
– Integration tests with simple to complex

configuration and system level
– Restart tests

• Rules of thumb
– Simple
– Enable quick pin-pointing

Useful resources https://ideas-
productivity.org/resources/howtos/

https://ideas-productivity.org/resources/howtos/

4

Why not always use the most stringent testing?
• Effort spent in devising running and maintaining test suite is a tax on team

resources
• When the tax is too high…

– Team cannot meet code-use objectives

• When is the tax is too low…
– Necessary oversight not provided
– Defects in code sneak through

• Team Meeting! Evaluate project needs:
– Objectives: expected use of the code
– Lifecycle stage: new or production or refactoring
– Team: size and degree of heterogeneity
– Lifetime: one off or ongoing production
– Complexity: modules and their interactions

rank 3

rank 2

halo cells

5

Additional Notes: Good Testing Practices

• Verify Code coverage
• Must have consistent policy on dealing with failed tests

– Issue tracking
• How quickly does it need to be fixed?
• Who is responsible for fixing it?

• Someone should be watching the test suite
• When refactoring or adding new features, run a regression suite before check in

– Add new regression tests or modify existing ones for the new features

• Code review before releasing test suite is useful
– Another person may spot issues you didn’t
– Incredibly cost-effective

6

Example 1: Test Development For a New Code

• Development of tests and diagnostics goes hand-
in-hand with code development

– Compare against simpler analytical or semi-analytical
solutions

– Build granularity into testing
– Use scaffolding ideas to build confidence
– Always inject errors to verify that the test is working
– Non-trivial to devise good tests, but extremely

important

7

There may not be existing tests

• Isolate a small area of the code
• Dump a useful state snapshot
• Build a test driver

– Start with only the files in the area
– Link in dependencies

– Copy if any customizations needed

• Read in the state snapshot
• Restart from the saved state
• Verify correctness

– Always inject errors to verify that the test is working

state

driver

Example 2:
Test Development For a Legacy Code

8

Example 3: Structuring Tests to pinpoint bugs

• Bottom-up picture (shim if needed)
– Components can be exercised against

known simpler applications
– Same applies to combination of

components

• Build a scaffolding of verification
tests to gain confidence

Unit test

Unit test

Mocked up
dependency

Real dependency

Unit test

9

Example 3: Structured Testing
Unit test for Grid halo cell fill
• Verification of guard/ghost/halo

cell fill
• Initialize field on interior cells

(red)
• Apply guard cell fill
• Check for equivalence with

known fill pattern

gc test Eos test

Next, build an EOS Test – is E(V,T) consistent with P(V,T)?

10

Unit test for Hydrodynamics
• Sedov blast wave
• High pressure at the center
• Shock moves out spherically
• FLASH with AMR and hydro
• Known analytical solution

Though it exercises mesh, hydro and eos, if mesh and
eos are verified first, then this test verifies hydro

gc test Eos test

Hydro test

More testing needed for Grid using AMR
Flux correction and regridding

Example 3: Structured Testing

11

For AMR, correct behavior of flux conservation and regridding
should also be verified.

Reason about correctness for testing Flux correction and regridding

IF Guardcell fill and EOS unit tests passed
• Run Hydro without AMR

– If failed fault is in Hydro

• Run Hydro with AMR, but no dynamic refinement
– If failed fault is in flux correction

• Run Hydro with AMR and dynamic refinement
– If failed fault is in regridding

Example 3: Structured Testing

12

Example 4: Coverage Matrix (physics vs. functionalities)

• Code coverage
tools necessary but
not sufficient

• Do not give any
information about
interoperability • Map your tests and examples – what do they do?

• Follow the order
– All unit tests – including full module tests (e.g. CL)
– Tests sensitive to perturbations (e.g. SV)
– Most stringent tests for solvers (e.g. WD, PT)
– Least complex test to cover remaining spots (Aha!)

First line of defense – code coverage tools

13

Takeaways

• Context: understand testing needs and costs
• Devise tests to enable quick pinpointing of errors through reasoning about their

behavior
• test at various granularities – bottom-up (UNIT/verification) through top-down

(integration/validation)
• Tests at various complexities – CI vs. regression
• Maintain a holistic validation strategy: think globally, act locally
…….Questions ?

	Testing Complex Software
	License, Citation and Acknowledgements
	How to build your test suite?
	Why not always use the most stringent testing?
	Additional Notes: Good Testing Practices�
	Example 1: Test Development For a New Code
	Slide Number 7
	Example 3: Structuring Tests to pinpoint bugs�
	Example 3: Structured Testing
	Example 3: Structured Testing
	Example 3: Structured Testing
	Example 4: Coverage Matrix (physics vs. functionalities)
	Takeaways

