
exascaleproject.org

See slide 2 for
license details

Scientific Software Design

Anshu Dubey
Argonne National Laboratory

Software Productivity and Sustainability track, ATPESC 2021

Contributors: Anshu Dubey (ANL), Mark C. Miller (LLNL)

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Rinku K. Gupta, and David M.

Rogers, Software Productivity and Sustainability track, in Argonne Training Program on Extreme-Scale
Computing (ATPESC), online, 2021. DOI: 10.6084/m9.figshare.15130590

• Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial…

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.15130590

3

More Scientific
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More
Hardware
Resources

HPC Computational Science Use-case

4

More Scientific
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More
Hardware
Resources

HPC Computational Science Use-case

Platform complexity

So
ftw

ar
e

co
m

pl
ex

ity

Distributed
memory
model

Heterogeneous
models

5

More Scientific
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More
Hardware
Resources

HPC Computational Science Use-case

Platform complexity

So
ftw

ar
e

co
m

pl
ex

ity

Distributed
memory
model

Heterogeneous
models

Many components may be under research
Software continuously evolves
All use cases are different and unique

6

General Design Principles for HPC Scientific Software

Considerations

 Multidisciplinary teams
 Many facets of knowledge
 To know everything is not feasible

 Two types of code components
 Infrastructure (mesh/IO/runtime …)
 Science models (numerical methods)

 Codes grow
 New ideas => new features
 Code reuse by others

Design Implications

 Separation of Concerns
 Shield developers from unnecessary

complexities

 Work with different lifecycles
 Long-lasting vs quick changing
 Logically vs mathematically complex

 Extensibility built in
 Ease of adding new capabilities
 Customizing existing capabilities

7

General Design Principles for HPC Scientific Software

Design first, then apply programming model to the design instead of
taking a programming model and fitting your design to it.

8

Requirements

Software Architecture API Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities

A Design Model for Separation of Concerns

9

The Running Example

10

• Specification
– Solve heat equation with some initial and boundary conditions
– Apply different integration methods

Problem Specification - Design Considerations

• What is model here?
– Initial conditions
– Boundary conditions
– Integration

• What is infrastructure here?
– Discretization/ State
– Verification
– I/O
– Application of initial conditions
– Runtime parameters
– Comparison

11

Infrastructure API

• process_args(int argc, char **argv)
• static void initialize(void)
• void copy(int n, double *dst, double const *src)
• void write_array(int t, int n, double dx, double const *a)
• void set_initial_condition(int n, double *a, double dx, char const *ic)

12

• double l2_norm(int n, double const *a, double const *b)
• bool update_solution_crankn(int n, double *curr, double const *last, double

const *cn_Amat, double bc_0, double bc_1)
• bool update_solution_upwind15(int n, double *curr, double const *last, double

alpha, double dx, double dt, double bc_0, double bc_1)
• bool update_solution_ftcs(int n, double *uk1, double const *uk0, double alpha,

double dx, double dt, double bc0, double bc1)
• void compute_exact_solution(int n, double *a, double dx, char const *ic, double

alpha, double t, double bc0, double bc1)

Numerics API

13

Real view : A
whole domain
with many
operators

Functional
decomposition

Virtual view :
domain sections
as stand-alone
computation unit

Virtual view
collection of
components

Spatial
decomposition

Parallelization
and scaling
optimization

Memory
access and
compute
optimization

 Virtual view of functionalities
 Decomposition into units and definition of

interfaces

Example: Architecting Multiphysics PDEs

14

Real view : A
whole domain
with many
operators

Functional
decomposition

Virtual view :
domain sections
as stand-alone
computation unit

Virtual view
collection of
components

Spatial
decomposition

Parallelization
and scaling
optimization

Memory
access and
compute
optimization

 Virtual view of functionalities
 Decomposition into units and definition of

interfaces

Example: Multiphysics PDEs for Distributed Memory Parallelism

Implemented by
domain experts
and applied
mathematicians

Implemented by
software and
performance
engineers

15

Example: Design for Extensibility from FLASH, Now Flash-X
Assumed that capabilities will
be added for better models
• Assembly from components
• Decentralized maintenance of

metadata
• Python tool to parse and

configure
• OOP implemented through Unix

directory structure and
configuration tool

Key idea is distributed
intelligence

16

Takeaways Until Now
• Differentiate between slow changing

and fast changing components of your
code

• Understand the requirements of your
infrastructure

• Implement separation of concerns
• Design with portability, extensibility,

reproducibility and maintainability in
mind

• Do not design with a specific
programming model in mind

Platform complexity

So
ftw

ar
e

co
m

pl
ex

ity

Distributed
memory
model

17

A New Paradigm Because of Platform Heterogeneity

• Question - do the design principles
change?

Platform complexity

So
ftw

ar
e

co
m

pl
ex

ity

Heterogeneous
models

18

A New Paradigm Because of Platform Heterogeneity

• Question - do the design principles
change?

• The answer is – not really
• The details get more involved

Platform complexity

So
ftw

ar
e

co
m

pl
ex

ity

Heterogeneous
models

19

Requirements

Software Architecture API Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities

A Design Model for Separation of Concerns

This is where maximum
change is likely

20

Design Guidance For Performance Portability

Design for Hierarchical parallelism

Design towards several thousand threads

Design for a hierarchical memory space

Design patterns that count, allocate, and reuse memory

Avoid exposing/using non-portable vendor-specific options

21

Features and Abstractions that must Come in

Real view : A
whole domain
with many
operators

Virtual view :
domain sections
as stand-alone
computation unit

Offloading
and scaling
optimization

Spatial
Decomposition
Blocks/tiles

Runtime
management

Load Distribution

Framework

Functional
decomposition

Virtual view
collection of
components

Memory
access and
compute
optimization

Abstraction at
solver level

code
transformation

22

Features and Abstractions that must Come in

Real view : A
whole domain
with many
operators

Virtual view :
domain sections
as stand-alone
computation unit

Offloading
and scaling
optimization

Spatial
Decomposition
Blocks/tiles

Runtime
management

Load Distribution

Framework

Functional
decomposition

Virtual view
collection of
components

Memory
access and
compute
optimization

Abstraction at
solver level

code
transformation

How do abstraction
layers work
 Infer the structure of the code
 Infer the map between

algorithms and devices
 Infer the data movements
 Map computations to devices
 These are specified either

through constructs or pragmas
Performance depends upon
how well the mapping is
done.

23

Make the same code work on different devices

• A way to let compiler know that ”this” expression can be
specialized in many ways

• Definition of specializations

Template meta-programming in abstraction layers

Underlying Ideas

24

Assigning work within
the node
• “Parallel For” or

directives with unified
memory

• Directives or specific
programming model for
explicit data movement

More complex data
orchestration system for
asynchronous
computation

Make the same code work on different devices

• A way to let compiler know that ”this” expression can be
specialized in many ways

• Definition of specializations

Template meta-programming in abstraction layers

Underlying Ideas

25

Assigning work within
the node
• “Parallel For” or

directives with unified
memory

• Directives or specific
programming model for
explicit data movement

More complex data
orchestration system for
asynchronous
computation

Make the same code work on different devices

• A way to let compiler know that ”this” expression can be
specialized in many ways

• Definition of specializations

Template meta-programming in abstraction layers

Underlying Ideas

Look at what is needed, design for commonalities.

26

Even when using third party abstraction tools
understanding the code’s structure and needs is

critical for performance portability

Assigning work within
the node
• “Parallel For” or

directives with unified
memory

• Directives or specific
programming model for
explicit data movement

More complex data
orchestration system for
asynchronous
computation

Make the same code work on different devices

• A way to let compiler know that ”this” expression can be
specialized in many ways

• Definition of specializations

Template meta-programming in abstraction layers

Underlying Ideas

Look at what is needed, design for commonalities.

27

Even when using third party abstraction tools
understanding the code’s structure and needs is

critical for performance portability
… that translates to investing in design

Assigning work within
the node
• “Parallel For” or

directives with unified
memory

• Directives or specific
programming model for
explicit data movement

More complex data
orchestration system for
asynchronous
computation

Make the same code work on different devices

• A way to let compiler know that ”this” expression can be
specialized in many ways

• Definition of specializations

Template meta-programming in abstraction layers

Underlying Ideas

Look at what is needed, design for commonalities.

28

Final takeaways

• The key to both performance portability and longevity is careful software design
• Extensibility should be built into the design
• Design should be independent of any specific programming model
• Composability and flexibility help with performance portability

• Resources:
– https://www.exascaleproject.org/
– https://doi.org/10.6084/m9.figshare.13283714.v1
– https://figshare.com/articles/presentation/SC20_Tutorial_Better_Scientific_Software/12994376

?file=25219346
– https://bssw.io/blog_posts/performance-portability-and-the-exascale-computing-project
– https://www.exascaleproject.org/event/kokkos-class-series

https://www.exascaleproject.org/
https://doi.org/10.6084/m9.figshare.13283714.v1
https://figshare.com/articles/presentation/SC20_Tutorial_Better_Scientific_Software/12994376?file=25219346
https://bssw.io/blog_posts/performance-portability-and-the-exascale-computing-project
https://www.exascaleproject.org/event/kokkos-class-series

	Scientific Software Design
	License, Citation and Acknowledgements
	Slide Number 3
	Slide Number 4
	Slide Number 5
	General Design Principles for HPC Scientific Software
	Slide Number 7
	A Design Model for Separation of Concerns
	�The Running Example
	Problem Specification - Design Considerations
	Infrastructure API
	Numerics API
	Example: Architecting Multiphysics PDEs
	Example: Multiphysics PDEs for Distributed Memory Parallelism
	Example: Design for Extensibility from FLASH, Now Flash-X
	Takeaways Until Now
	A New Paradigm Because of Platform Heterogeneity
	A New Paradigm Because of Platform Heterogeneity
	A Design Model for Separation of Concerns
	Design Guidance For Performance Portability
	Features and Abstractions that must Come in
	Features and Abstractions that must Come in
	Underlying Ideas
	Underlying Ideas
	Underlying Ideas
	Underlying Ideas
	Underlying Ideas
	Final takeaways

