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Many components may be under research
Software continuously evolves
All use cases are different and unique



6

General Design Principles for HPC Scientific Software

Considerations

 Multidisciplinary teams
 Many facets of knowledge
 To know everything is not feasible

 Two types of code components
 Infrastructure (mesh/IO/runtime …)
 Science models (numerical methods)

 Codes grow
 New ideas => new features
 Code reuse by others 

Design Implications

 Separation of Concerns
 Shield developers from unnecessary 

complexities

 Work with different lifecycles
 Long-lasting vs quick changing
 Logically vs mathematically complex

 Extensibility built in
 Ease of adding new capabilities
 Customizing existing capabilities
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General Design Principles for HPC Scientific Software

Design first, then apply programming model to the design instead of 
taking a programming model and fitting  your design to it.
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The Running Example
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• Specification
– Solve heat equation with some initial and boundary conditions
– Apply different integration methods 

Problem Specification - Design Considerations

• What is model here?
– Initial conditions
– Boundary conditions
– Integration 

• What is infrastructure here?
– Discretization/ State
– Verification
– I/O
– Application of initial conditions
– Runtime parameters
– Comparison
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Infrastructure API

• process_args(int argc, char **argv)
• static void initialize(void)
• void copy(int n, double *dst, double const *src)
• void write_array(int t, int n, double dx, double const *a)
• void set_initial_condition(int n, double *a, double dx, char const *ic)
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• double l2_norm(int n, double const *a, double const *b)
• bool update_solution_crankn(int n, double *curr, double const *last, double 

const *cn_Amat, double bc_0, double bc_1)
• bool update_solution_upwind15(int n, double *curr, double const *last, double 

alpha, double dx, double dt, double bc_0, double bc_1)  
• bool update_solution_ftcs( int n, double *uk1, double const *uk0, double alpha, 

double dx, double dt, double bc0, double bc1)
• void compute_exact_solution(int n, double *a, double dx, char const *ic, double 

alpha, double t, double bc0, double bc1)

Numerics API
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Example: Multiphysics PDEs for Distributed Memory Parallelism

Implemented by 
domain experts 
and applied 
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Implemented by
software and 
performance
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Example: Design for Extensibility from FLASH, Now Flash-X
Assumed that capabilities will 
be added for better models
• Assembly from components
• Decentralized maintenance of 

metadata
• Python tool to parse and 

configure
• OOP implemented through Unix 

directory structure and 
configuration tool

Key idea is distributed 
intelligence
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Takeaways Until Now
• Differentiate between slow changing 

and fast changing components of your 
code

• Understand the requirements of your 
infrastructure

• Implement separation of concerns
• Design with portability, extensibility, 

reproducibility and maintainability in 
mind

• Do not design with a specific 
programming model in mind
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A New Paradigm Because of Platform Heterogeneity

• Question - do the design principles 
change?

• The answer is – not really
• The details get more involved
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A Design Model for Separation of Concerns

This is where maximum 
change is likely
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Design Guidance For Performance Portability

Design for Hierarchical parallelism

Design towards several thousand threads

Design for a hierarchical memory space

Design patterns that count, allocate, and reuse memory

Avoid exposing/using non-portable vendor-specific options
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How do abstraction 
layers work
 Infer the structure of the code
 Infer the map between 

algorithms and devices
 Infer the data movements
 Map computations to devices
 These are specified either 

through constructs or pragmas 
Performance depends upon 
how well the mapping is 
done.
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Make the same code work on different devices

• A way to let compiler know that ”this” expression can be 
specialized in many ways

• Definition of specializations

Template meta-programming in abstraction layers

Underlying Ideas
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Even when using third party abstraction tools 
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Even when using third party abstraction tools 
understanding the code’s structure and needs is 

critical for performance portability
… that translates to investing in design  
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explicit data movement

More complex data 
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Template meta-programming in abstraction layers

Underlying Ideas

Look at what is needed, design for commonalities.
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Final takeaways

• The key to both performance portability and longevity is careful software design
• Extensibility should be built into the design
• Design should be independent of any specific programming model
• Composability and flexibility help with performance portability

• Resources:
– https://www.exascaleproject.org/
– https://doi.org/10.6084/m9.figshare.13283714.v1
– https://figshare.com/articles/presentation/SC20_Tutorial_Better_Scientific_Software/12994376

?file=25219346
– https://bssw.io/blog_posts/performance-portability-and-the-exascale-computing-project
– https://www.exascaleproject.org/event/kokkos-class-series

https://www.exascaleproject.org/
https://doi.org/10.6084/m9.figshare.13283714.v1
https://figshare.com/articles/presentation/SC20_Tutorial_Better_Scientific_Software/12994376?file=25219346
https://bssw.io/blog_posts/performance-portability-and-the-exascale-computing-project
https://www.exascaleproject.org/event/kokkos-class-series
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