
exascaleproject.org

See slide 2 for
license details

Software Testing: Introduction

David M. Rogers
Oak Ridge National Laboratory

Software Productivity and Sustainability track, ATPESC 2021

Contributors: Anshu Dubey (ANL), Rinku Gupta (ANL), Alicia Klinvex
(SNL), Mark C. Miller (LLNL), Jared O’Neal (ANL), Patricia Grubel
(LANL)

LA-UR-21-25675

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Rinku K. Gupta, and David M.

Rogers, Software Productivity and Sustainability track, in Argonne Training Program on Extreme-Scale
Computing (ATPESC), online, 2021. DOI: 10.6084/m9.figshare.15130590

• Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial…

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.15130590

3

Software Testing - Outline

• Development context for testing
• Challenges
• Toy Example

• Walk Through Testing Example

• Guidelines for developing a testing & validation plan
• Production Examples

– Testing a legacy Fortran code
– Designing tests alongside code development

• Conclusions: Testing within a team context

Testing Introduction

Advanced Testing

Testing Walkthrough

4

Testing within the software development lifecycleTesting within the software development lifecycle

5

Testing within the software development lifecycle

• During initial code development
– Accuracy and stability
– Matching the algorithm to the model
– Interoperability of algorithms

• In later stages
– Adding new major capabilities
– Modifying existing capabilities
– Ongoing maintenance
– Preparing for production

6

Testing as a development practice

Documentation

Build System

CI

SIAM CSE21, “Querying the ECP” - figshare

https://dx.doi.org/10.6084/m9.figshare.14188463.v1

7

Audiences for this presentation

• New to testing / beginning development on a new project
– Helpful starting points and ways to “start small.”

• Working with a legacy project that needs testing
– Code isolation for incrementally adding testing

• Improving testing practices on an existing project
– Ideas and guidelines for a holistic verification strategy

8

Definitions: Verification vs. Testing vs. Validation
• Software verification addresses design:

– Does the operational standard make logical sense?
– Is the implementation consistent with model?

• Model validation checks operation:
– Is the code capable of handling your target science cases?
– Is its answer consistent with use expectations?

How do verification and validation differ?
• Verification confirms that you have implemented what you meant to

• Your method does what you wanted it to do
• Validation says whether your science goals are met by your implementation

• What you wanted your method to do is scientifically valid
• Your model correctly captures the phenomenon you are trying to

understand (outward-looking, not fully captured by tests)

Verification

experimental
comparison

Validation

standards
review unit

tests

precision /
accuracy
test

https://www.energy.gov/nnsa/articles/face-uncertainties-nnsa-seeks-verification-and-validation

9

Components of Verification

• Testing at various granularity levels
– Individual components
– Interoperability of components
– Convergence, stability and accuracy
– Includes testing "upstream dependencies"

• Validation of individual components
– Building diagnostics (e.g. ensure conservation of physical quantities)

• Testing practices
– Error bars

• Necessary for differentiating between drift and round-off

• Ensuring code and interoperability coverage

Unit Test

Integration
Test

10

Challenges

• Exploratory Software
– Implies one does not know the outcome
– Still determining where model is valid
– A: Validation from domain experts feeds back into design

• Legacy Codes
– Original verification has been lost in the mists of time.
– Assumptions, conditions, interactions unknown: “Bad code or necessary evil?”

• Releasing Codes
– Code review to check scope of problem, solution, and documentation.
– Verification before product release is a cost-effective way to prevent defects from

getting through.

11

Toy Example pip3 install pyscaffold
pip3 install tox
putup autoQCT
cd autoQCT # tests in tests/ subdir.
tox

default run-test: commands[0] | pytest
======================= test session starts ========================
platform darwin -- Python 3.9.0, pytest-6.2.2, py-1.10.0, pluggy-0.13.1 -- plugins:
cov-2.11.1
collected 2 items

tests/test_skeleton.py::test_fib PASSED [50%]
tests/test_skeleton.py::test_main PASSED [100%]

---------- coverage: platform darwin, python 3.9.0-final-0 -----------
Name Stmts Miss Branch BrPart Cover Missing

src/autoqct/__init__.py 6 0 0 0 100%
src/autoqct/skeleton.py 32 1 2 0 97% 135

TOTAL 38 1 2 0 98%

======================== 2 passed in 0.07s =========================
default: commands succeeded
congratulations :)

pyscaffold.org

https://pyscaffold.org/

12

Toy Example
cat >CMakeLists.txt <<.
cmake_minimum_required(VERSION 3.8)
project(blank)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
include(blt/SetupBLT.cmake)
.
git clone https://github.com/LLNL/blt/
mkdir build && cd build
make –j && make test

...
[100%] Linking CXX executable ../../../tests/blt_gtest_smoke
[100%] Built target blt_gtest_smoke
mac0103234:build 99r$ make test
Running tests...
Test project /Users/99r/work/autoQCT/blank_project/build

Start 1: blt_gtest_smoke
1/1 Test #1: blt_gtest_smoke Passed 0.46 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 0.46 sec

llnl-blt.readthedocs.io

https://llnl-blt.readthedocs.io/

13

Going Further

• C, C++, Fortran
– Running and Reporting Tests: ctest / cdash
– Code Coverage: gcov / lcov (C, C++, Fortran)
– Static Analysis: clang-tidy (only C, C++)

• Python
– Running and Reporting Tests: pytest / unittest / nose
– Code Coverage: pytest-cov
– Static Source Code Analysis: pylint / flake8

14

• Expose parts of the code that aren’t being tested
– gcov - standard utility with the GNU compiler

collection suite (we will use it in the next few slides)
– Compile/link with –coverage & turn off optimization
– counts the number of times each statement is

executed

• gcov also works for C and Fortran
– Other tools exist for other languages
– JCov for Java
– Coverage.py for python
– Devel::Cover for perl
– profile for MATLAB

Code coverage tools
How do we determine what other tests are needed?

• Lcov
– a graphical front-end for gcov
– available at

http://ltp.sourceforge.net/coverage
/lcov.php

– Codecov.io in CI module

• Hosted servers (e.g. coveralls,
codecov)

• graphical visualization of results
• push results to server through

continuous integration server

15

• Example of heat equation
– Add -coverage as shown below to

Makefile
– Run ./heat runame=“ftcs_results”
– Run gcov heat.C
– Examine heat.C.gcov

• A dash indicates non-executable line

• A number indicated the times the line was called

• ##### indicates line wasn’t exercised

Checking coverage Example

16

Graphical View of Gcov Output and Tutorials for Code Coverage

Online tutorial - https://github.com/amklinv/morpheus
Other example - https://github.com/jrdoneal/infrastructure

Coverage Summary

Line-by-line details

https://github.com/amklinv/morpheus
https://github.com/amklinv/morpheus

17

Summary

• A productive software team is always checking their work.
– Take time to recognize these checks and harden them into “real,” repeatable

tests.

• Test layout should mirror the logical structure of your code.
– Test each module, being aware of module to module dependencies.

• Different challenges are associated with exploratory, legacy, and
release codes.
– Adapt your strategy to fit your situation.
– Eventually you will want to be able to verify all components in a code release.

• Don’t get distracted by all the technologies out there – focus on
exercising your code.
– Scaffolding projects can help with mechanics.

	Software Testing: Introduction
	License, Citation and Acknowledgements
	Software Testing - Outline
	Testing within the software development lifecycle
	Testing within the software development lifecycle
	Testing as a development practice
	Audiences for this presentation
	Definitions: Verification vs. Testing vs. Validation
	Components of Verification
	Challenges
	Toy Example
	Toy Example
	Going Further
	How do we determine what other tests are needed?
	Checking coverage Example
	Graphical View of Gcov Output and Tutorials for Code Coverage
	Summary

