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Software Testing - Outline

• Development context for testing
• Challenges
• Toy Example

• Walk Through Testing Example

• Guidelines for developing a testing & validation plan
• Production Examples

– Testing a legacy Fortran code
– Designing tests alongside code development

• Conclusions: Testing within a team context

Testing Introduction

Advanced Testing

Testing Walkthrough
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Testing within the software development lifecycleTesting within the software development lifecycle
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Testing within the software development lifecycle

• During initial code development
– Accuracy and stability 
– Matching the algorithm to the model
– Interoperability of algorithms

• In later stages
– Adding new major capabilities
– Modifying existing capabilities 
– Ongoing maintenance 
– Preparing for production
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Testing as a development practice

Documentation

Build System

CI

SIAM CSE21, “Querying the ECP” - figshare

https://dx.doi.org/10.6084/m9.figshare.14188463.v1
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Audiences for this presentation

• New to testing / beginning development on a new project
– Helpful starting points and ways to “start small.”

• Working with a legacy project that needs testing
– Code isolation for incrementally adding testing

• Improving testing practices on an existing project
– Ideas and guidelines for a holistic verification strategy
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Definitions: Verification vs. Testing vs. Validation
• Software verification addresses design:

– Does the operational standard make logical sense?
– Is the implementation consistent with model?

• Model validation checks operation:
– Is the code capable of handling your target science cases?
– Is its answer consistent with use expectations?

How do verification and validation differ?
• Verification confirms that you have implemented what you meant to

• Your method does what you wanted it to do
• Validation says whether your science goals are met by your implementation

• What you wanted your method to do is scientifically valid
• Your model correctly captures the phenomenon you are trying to 

understand (outward-looking, not fully captured by tests)

Verification

experimental 
comparison

Validation

standards 
review unit

tests

precision /
accuracy 
test

https://www.energy.gov/nnsa/articles/face-uncertainties-nnsa-seeks-verification-and-validation



9

Components of Verification

• Testing at various granularity levels
– Individual components
– Interoperability of components
– Convergence, stability and accuracy
– Includes testing "upstream dependencies"

• Validation of individual components
– Building diagnostics (e.g. ensure conservation of physical quantities)

• Testing practices
– Error bars

• Necessary for differentiating between drift and round-off

• Ensuring code and interoperability coverage

Unit Test

Integration 
Test
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Challenges

• Exploratory Software
– Implies one does not know the outcome
– Still determining where model is valid
– A: Validation from domain experts feeds back into design

• Legacy Codes
– Original verification has been lost in the mists of time.
– Assumptions, conditions, interactions unknown: “Bad code or necessary evil?”

• Releasing Codes
– Code review to check scope of problem, solution, and documentation.
– Verification before product release is a cost-effective way to prevent defects from 

getting through.
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Toy Example pip3 install pyscaffold
pip3 install tox
putup autoQCT
cd autoQCT # tests in tests/ subdir.
tox

default run-test: commands[0] | pytest
======================= test session starts ========================
platform darwin -- Python 3.9.0, pytest-6.2.2, py-1.10.0, pluggy-0.13.1 -- plugins: 
cov-2.11.1
collected 2 items 

tests/test_skeleton.py::test_fib PASSED [ 50%]
tests/test_skeleton.py::test_main PASSED [100%]

---------- coverage: platform darwin, python 3.9.0-final-0 -----------
Name Stmts Miss Branch BrPart Cover Missing
---------------------------------------------------------------------
src/autoqct/__init__.py 6 0 0 0 100%
src/autoqct/skeleton.py 32 1 2 0 97% 135
---------------------------------------------------------------------
TOTAL 38 1 2 0 98%

======================== 2 passed in 0.07s =========================
default: commands succeeded
congratulations :)

pyscaffold.org

https://pyscaffold.org/


12

Toy Example
cat >CMakeLists.txt <<.
cmake_minimum_required(VERSION 3.8)
project( blank )
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
include(blt/SetupBLT.cmake)
.
git clone https://github.com/LLNL/blt/
mkdir build && cd build
make –j && make test

...
[100%] Linking CXX executable ../../../tests/blt_gtest_smoke
[100%] Built target blt_gtest_smoke
mac0103234:build 99r$ make test
Running tests...
Test project /Users/99r/work/autoQCT/blank_project/build

Start 1: blt_gtest_smoke
1/1 Test #1: blt_gtest_smoke ..................   Passed    0.46 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) =   0.46 sec

llnl-blt.readthedocs.io

https://llnl-blt.readthedocs.io/
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Going Further

• C, C++, Fortran
– Running and Reporting Tests: ctest / cdash
– Code Coverage: gcov / lcov (C, C++, Fortran)
– Static Analysis: clang-tidy (only C, C++)

• Python
– Running and Reporting Tests: pytest / unittest / nose
– Code Coverage: pytest-cov
– Static Source Code Analysis: pylint / flake8
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• Expose parts of the code that aren’t being tested
– gcov - standard utility with the GNU compiler 

collection suite (we will use it in the next few slides)
– Compile/link with –coverage & turn off optimization
– counts the number of times each statement is 

executed

• gcov also works for C and Fortran
– Other tools exist for other languages
– JCov for Java
– Coverage.py for python
– Devel::Cover for perl
– profile for MATLAB

Code coverage tools
How do we determine what other tests are needed?

• Lcov
– a graphical front-end for gcov
– available at 

http://ltp.sourceforge.net/coverage
/lcov.php

– Codecov.io in CI module 

• Hosted servers (e.g. coveralls, 
codecov)

• graphical visualization of results
• push results to server through 

continuous integration server
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• Example of heat equation
– Add -coverage as shown below to 

Makefile
– Run ./heat runame=“ftcs_results”
– Run gcov heat.C
– Examine heat.C.gcov

• A dash indicates non-executable line

• A number indicated the times the line was called

• ##### indicates line wasn’t exercised

Checking coverage Example
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Graphical View of Gcov Output and Tutorials for Code Coverage 

Online tutorial - https://github.com/amklinv/morpheus
Other example - https://github.com/jrdoneal/infrastructure

Coverage Summary

Line-by-line details

https://github.com/amklinv/morpheus
https://github.com/amklinv/morpheus
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Summary

• A productive software team is always checking their work.
– Take time to recognize these checks and harden them into “real,” repeatable 

tests.

• Test layout should mirror the logical structure of your code.
– Test each module, being aware of module to module dependencies.

• Different challenges are associated with exploratory, legacy, and 
release codes.
– Adapt your strategy to fit your situation.
– Eventually you will want to be able to verify all components in a code release.

• Don’t get distracted by all the technologies out there – focus on 
exercising your code.
– Scaffolding projects can help with mechanics.
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