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Hello Numerical World Example (heat equation)

$ wc *.C
125     494    4161 args.C # parse arguments
220     718    5667 heat.C # main() – stores all vars
151     498    3888 utils.C # l2_norm, write, copy, init
26     119     820 ftcs.C # standard, centered stencil
27     123     833 upwind15.C # alternate integration schemes
94     344    2134 crankn.C
43     190    1299 exact.C # comparison solution

github.com/bssw-tutorials/hello-numerical-world

• Lots of setup code – prepares problem for kernel calls
• Isolated, swappable kernel calls

– Imagine adding kernels to larger, multi-physics application.
• How can we support testing all these kernel configurations?

{

https://github.com/bssw-tutorials/hello-numerical-world
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What to Test?

exact(x)

x

curr(x)

error?

• Types of Tests:
– code coverage – ensure options parse, bad cases 

detected, utilities fuction, etc.
– steady-state (should be straight line)

• external script can test file write() as well
– solution time-dependence vs. reference

• (d/dx)2 sin(ax) = -a2 sin(ax)
– integration between codes?
– test compile/run in multiple precisions?

• combinatorial problems – listing tests in for() or matrix...
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Running Tests via makefile

$ make check_all
c++ -c -Iinclude -DHEAT_VERSION_MAJOR=0 -
DHEAT_VERSION_MINOR=5 args.C -o args.o
c++ -o heat heat.o utils.o args.o exact.o ftcs.o upwind15.o 
crankn.o -lm
./heat runame=check outi=0 maxt=-5e-8 ic="rand(0,0.2,2)"

runame="check"
...
Stopped after 001490 iterations for threshold 2.46636e-15
cat check/check_soln_final.curve
# Temperature
...
./check.sh check/check_soln_final.curve 0

make completes: commands succeeded

steady-state test
(should be straight line)  

exact(x)

x

curr(x)

error?
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TODO – try out new build tools and add tests to them

• Replace makefile with CMakeLists.txt
– replaces rules with targets (tied to a list of source files)
– targets have attributes

• target_link_libraries (e.g. MPI::MPI_CXX)
• target_include_directories (many already inferred from link libraries)
• target_compile_features (e.g. cxx_std11)

– provides find_package command
– targets can be installed

• Replace "make check_all" with ctest
– reduces glue code
– different interface for adding tests

• End Result: contrast two methods of testing.
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existing makefile

...

# Implicit rule for object files
%.o : %.C

$(CXX) -c $(CXXFLAGS) $(CPPFLAGS) $< -o $@

# Linking the final heat app
heat: $(OBJ)

$(CXX) -o heat $(OBJ) $(LDFLAGS) –lm

Standard makefile – user selects compile flags.
- but flags and features are compiler and system-specific
- enter automake and cmake -> generate makefiles

makefile
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Conversion to cmake (entire file)

cmake_minimum_required(VERSION 3.8)
project(heat VERSION 0.5 LANGUAGES CXX)
# can change boolean variable with "-DCMAKE_BUILD_TESTS=OFF"
option(BUILD_TESTS "Build the tests accompanying this program." ON)
# pass cmake options (e.g. version) into a header 
configure_file(include/version.H.in include/version.H)
add_executable(heat args.C crankn.C ...) # list sources
# feature – lets cmake adjust flags for compiler --std=c++11 vs –c11
target_compile_features(heat cxx_std_11)
# include directories for all files in this target:
target_include_directories(heat ${PROJECT_BINARY_DIR}/include)
if(BUILD_TESTS) add_subdirectory(tests) endif() # subdir for tests
install(TARGETS heat DESTINATION bin) # "make install" target

CMakeLists.txt
https://cmake.org/cmake/help/latest/guide/tutorial/index.html
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existing tests

...
check_crankn/check_crankn_soln_final.curve:

./heat alg=crankn runame=check_crankn outi=0 maxt=-5e-8 ic="rand(0,0.2,2)"
check_crankn: heat check_crankn/check_crankn_soln_final.curve

cat check_crankn/check_crankn_soln_final.curve
./check.sh check_crankn/check_crankn_soln_final.curve

check_upwind15/check_upwind15_soln_final.curve:
./heat alg=upwind15 ...

Create a test driver to:
1. run executable
2. check result
3. clean up outputs

makefile include (tests.mk)
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Addition to CMakeLists.txt

enable_testing()

add_test(NAME heat_help
COMMAND $<TARGET_FILE:heat> help)

add_test(NAME crankn
COMMAND testDriver.sh $<TARGET_FILE:heat> crankn)

# functions/for/if/adding tests

tests/CMakeLists.txt

Lots of potential for programmatically creating tests!

Try and keep it simple – complex cmake code is bad form.

cmake.org/cmake/help/latest/command/add_test.html
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Bonus: swap out test driver (perl -> awk)

#!/bin/bash
set –e               # exit immediately on error
errbnd=1e-7
alg="$2"
$1 alg=$alg runame=check_$alg outi=0 maxt=-5e-8 ic="rand(0,0.2,2)"

# absolute error check (deviation from straight line) 
err=$(awk 'function abs(x){return ((x < 0.0) ? -x : x)}; BEGIN {err=1e10;} ! /#/ {err1=abs($2-$1); if(err1 
< err) err = err1;} END {print err;}' check_$alg/check_${alg}_soln_final.curve)

echo "Error = $err"
rm -fr check_$alg # delete directory to test is re-runnable

awk "BEGIN {exit($err >= $errbnd);}"  # final return code

tests/testDriver.sh



12

Running

Test project hello-numerical-world/build/tests
Start 1: ftcs

1/3 Test #1: ftcs ............................. Passed 0.02 sec
Start 2: crankn

2/3 Test #2: crankn ........................... Passed 0.02 sec
Start 3: upwind15

3/3 Test #3: upwind15 ......................... Passed 0.03 sec

100% tests passed, 0 tests failed out of 3

Total Test time (real) = 0.08 sec

cmake ..
make –j
cd tests && ctest
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Going Further

• Reproduce these testing strategies on another repository
– github.com/frobnitzem/simple-heateq (same problem, different design)

• Brainstorm some simple tests you could add to your own project
– checks you've run manually
– difficult-to-setup and reproduce cases that could be automated

• Add some "blank tests" to your project
– reduces the barrier to increased testing
– What would make reporting on your build / run status better/simpler/more 

accessible?
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Conclusion – C, kernels, makefiles, CMakeLists, coverage, etc.

• Start your projects small, stay organized
– makefiles provide fast development path
– add tests before complexity grows!
– simple to do with a "make check" target

• cmake (like autoconf) helps make portable builds
– find_package
– programmatic build options
– set target properties -> cmake looks up compiler flags for you

• good testing strategies exist for both
– directly run the executable with all options
– create shell-script "test driver"
– build stand-alone executables loading a library
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