
exascaleproject.org

See slide 2 for
license details

Software Testing Walkthrough

David M. Rogers
Oak Ridge National Laboratory

Software Productivity and Sustainability track, ATPESC 2021

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Rinku K. Gupta, and David M.

Rogers, Software Productivity and Sustainability track, in Argonne Training Program on Extreme-Scale
Computing (ATPESC), online, 2021. DOI: 10.6084/m9.figshare.15130590

• Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial…

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.15130590

3

Hello Numerical World Example (heat equation)

$ wc *.C
125 494 4161 args.C # parse arguments
220 718 5667 heat.C # main() – stores all vars
151 498 3888 utils.C # l2_norm, write, copy, init
26 119 820 ftcs.C # standard, centered stencil
27 123 833 upwind15.C # alternate integration schemes
94 344 2134 crankn.C
43 190 1299 exact.C # comparison solution

github.com/bssw-tutorials/hello-numerical-world

• Lots of setup code – prepares problem for kernel calls
• Isolated, swappable kernel calls

– Imagine adding kernels to larger, multi-physics application.
• How can we support testing all these kernel configurations?

{

https://github.com/bssw-tutorials/hello-numerical-world

4

What to Test?

exact(x)

x

curr(x)

error?

• Types of Tests:
– code coverage – ensure options parse, bad cases

detected, utilities fuction, etc.
– steady-state (should be straight line)

• external script can test file write() as well
– solution time-dependence vs. reference

• (d/dx)2 sin(ax) = -a2 sin(ax)
– integration between codes?
– test compile/run in multiple precisions?

• combinatorial problems – listing tests in for() or matrix...

5

Running Tests via makefile

$ make check_all
c++ -c -Iinclude -DHEAT_VERSION_MAJOR=0 -
DHEAT_VERSION_MINOR=5 args.C -o args.o
c++ -o heat heat.o utils.o args.o exact.o ftcs.o upwind15.o
crankn.o -lm
./heat runame=check outi=0 maxt=-5e-8 ic="rand(0,0.2,2)"

runame="check"
...
Stopped after 001490 iterations for threshold 2.46636e-15
cat check/check_soln_final.curve
Temperature
...
./check.sh check/check_soln_final.curve 0

make completes: commands succeeded

steady-state test
(should be straight line)

exact(x)

x

curr(x)

error?

6

TODO – try out new build tools and add tests to them

• Replace makefile with CMakeLists.txt
– replaces rules with targets (tied to a list of source files)
– targets have attributes

• target_link_libraries (e.g. MPI::MPI_CXX)
• target_include_directories (many already inferred from link libraries)
• target_compile_features (e.g. cxx_std11)

– provides find_package command
– targets can be installed

• Replace "make check_all" with ctest
– reduces glue code
– different interface for adding tests

• End Result: contrast two methods of testing.

7

existing makefile

...

Implicit rule for object files
%.o : %.C

$(CXX) -c $(CXXFLAGS) $(CPPFLAGS) $< -o $@

Linking the final heat app
heat: $(OBJ)

$(CXX) -o heat $(OBJ) $(LDFLAGS) –lm

Standard makefile – user selects compile flags.
- but flags and features are compiler and system-specific
- enter automake and cmake -> generate makefiles

makefile

8

Conversion to cmake (entire file)

cmake_minimum_required(VERSION 3.8)
project(heat VERSION 0.5 LANGUAGES CXX)
can change boolean variable with "-DCMAKE_BUILD_TESTS=OFF"
option(BUILD_TESTS "Build the tests accompanying this program." ON)
pass cmake options (e.g. version) into a header
configure_file(include/version.H.in include/version.H)
add_executable(heat args.C crankn.C ...) # list sources
feature – lets cmake adjust flags for compiler --std=c++11 vs –c11
target_compile_features(heat cxx_std_11)
include directories for all files in this target:
target_include_directories(heat ${PROJECT_BINARY_DIR}/include)
if(BUILD_TESTS) add_subdirectory(tests) endif() # subdir for tests
install(TARGETS heat DESTINATION bin) # "make install" target

CMakeLists.txt
https://cmake.org/cmake/help/latest/guide/tutorial/index.html

9

existing tests

...
check_crankn/check_crankn_soln_final.curve:

./heat alg=crankn runame=check_crankn outi=0 maxt=-5e-8 ic="rand(0,0.2,2)"
check_crankn: heat check_crankn/check_crankn_soln_final.curve

cat check_crankn/check_crankn_soln_final.curve
./check.sh check_crankn/check_crankn_soln_final.curve

check_upwind15/check_upwind15_soln_final.curve:
./heat alg=upwind15 ...

Create a test driver to:
1. run executable
2. check result
3. clean up outputs

makefile include (tests.mk)

10

Addition to CMakeLists.txt

enable_testing()

add_test(NAME heat_help
COMMAND $<TARGET_FILE:heat> help)

add_test(NAME crankn
COMMAND testDriver.sh $<TARGET_FILE:heat> crankn)

functions/for/if/adding tests

tests/CMakeLists.txt

Lots of potential for programmatically creating tests!

Try and keep it simple – complex cmake code is bad form.

cmake.org/cmake/help/latest/command/add_test.html

11

Bonus: swap out test driver (perl -> awk)

#!/bin/bash
set –e # exit immediately on error
errbnd=1e-7
alg="$2"
$1 alg=$alg runame=check_$alg outi=0 maxt=-5e-8 ic="rand(0,0.2,2)"

absolute error check (deviation from straight line)
err=$(awk 'function abs(x){return ((x < 0.0) ? -x : x)}; BEGIN {err=1e10;} ! /#/ {err1=abs($2-$1); if(err1
< err) err = err1;} END {print err;}' check_$alg/check_${alg}_soln_final.curve)

echo "Error = $err"
rm -fr check_$alg # delete directory to test is re-runnable

awk "BEGIN {exit($err >= $errbnd);}" # final return code

tests/testDriver.sh

12

Running

Test project hello-numerical-world/build/tests
Start 1: ftcs

1/3 Test #1: ftcs Passed 0.02 sec
Start 2: crankn

2/3 Test #2: crankn Passed 0.02 sec
Start 3: upwind15

3/3 Test #3: upwind15 Passed 0.03 sec

100% tests passed, 0 tests failed out of 3

Total Test time (real) = 0.08 sec

cmake ..
make –j
cd tests && ctest

13

Going Further

• Reproduce these testing strategies on another repository
– github.com/frobnitzem/simple-heateq (same problem, different design)

• Brainstorm some simple tests you could add to your own project
– checks you've run manually
– difficult-to-setup and reproduce cases that could be automated

• Add some "blank tests" to your project
– reduces the barrier to increased testing
– What would make reporting on your build / run status better/simpler/more

accessible?

14

Conclusion – C, kernels, makefiles, CMakeLists, coverage, etc.

• Start your projects small, stay organized
– makefiles provide fast development path
– add tests before complexity grows!
– simple to do with a "make check" target

• cmake (like autoconf) helps make portable builds
– find_package
– programmatic build options
– set target properties -> cmake looks up compiler flags for you

• good testing strategies exist for both
– directly run the executable with all options
– create shell-script "test driver"
– build stand-alone executables loading a library

	Software Testing Walkthrough
	License, Citation and Acknowledgements
	Hello Numerical World Example (heat equation)
	What to Test?
	Running Tests via makefile
	TODO – try out new build tools and add tests to them
	existing makefile
	Conversion to cmake (entire file)
	existing tests
	Addition to CMakeLists.txt
	Bonus: swap out test driver (perl -> awk)
	Running
	Going Further
	Conclusion – C, kernels, makefiles, CMakeLists, coverage, etc.

