WHAT IS CONNECTOMICS?

- Connectomics attempts to reconstruct the neurons in a sample of brain tissue to obtain their shape and interconnectivity.
- Why? To answer some fundamental and practical questions:
 - How does the brain achieve its functionality (sensory, motor, consciousness)?
 - How do developmental changes (e.g. aging) affect the brain?
 - Is learning reflected in structure and connectivity?
 - How does plasticity help overcome brain injury?
 - Can we leverage an understanding of biological brains to improve neural networks?
 - Can we use biological structure to build faster and more power-efficient computers?
SAMPLE PROCESSING

~1cm3 ~1mm3

Mouse brain: 70M neurons

25000 40nm sections 1mm x 1mm (6nm resolution)

Each section imaged with EM as N tiles (8 bit)

Sections stitched together

How much image data is 1mm3? 1e15 voxels -> ~1 PB

Data from Gregg Wildenberg, Kasthuri Lab, UChicago
SAMPLE PROCESSING

Sections stitched together
Align sections
Mask out non-target objects
Segment target objects

Data from Gregg Wildenberg, Kasthuri Lab, UChicago
Neurons with >1M voxels in 5000 x 5000 x 460 volume
LEARNING CHALLENGES IN CONNECTOMICS

Mask out non-target objects (e.g. blood vessels)

Segment target objects

Human-intensive annotation to produce training data and iteratively correct segmentation

Connectivity Graph Analysis

2D Unet used to segment large objects and mask them from later expensive segmentation operations

Flood Filling Network (FFN) used to segment neurons incl their axons, dendrites, dendritic spines. Training is human-intensive; inference is compute-intensive.

SOTA efforts require thousands of hours of human effort to annotate and correct a small fraction of a mouse brain

3D Unet used to segment synapses (connections between neurons) in the final 3D segmentation yields opportunity to analyze interconnections
FLOOD FILLING NETWORK (FFN)

- FFN was developed by Google Brain for automated segmentation of structures in EM image data
- Implemented in TensorFlow
- Network consists of a series of 3D convolutional blocks with residual connections
 - A 12 layer network has roughly 0.5M trainable parameters
- Network builds on notion of watershed algorithm
 - Finds boundaries and fills interior
 - Prefers split errors over merge errors
- Boundary-finding is complicated
 - complex object structure and substructure
 - variation between datasets (limited opportunity for transfer learning, and yet...)
 - variation within datasets (fixing, cutting, staining, imaging)
- Dataset-specific training is required
- Accuracy of FFN is an order of magnitude better than past approaches, but with a higher computational cost.

DATA CHALLENGES IN CONNECTOMICS

Mouse brain: 70M neurons

Human brain: 80B neurons

Reconstructed data will be much larger:

- Segmentation labels for each voxel (4x voxel data)
- 3D Mesh
- Skeleton

Need tools for navigating these datasets

How much image data is 1 cm³?
~1 EB

How many brains do we need for statsig?

How much image data is 1000 cm³?
~1000 EB (6nm x 6nm x 40nm)

~1 cm³
How much image data is 1 cm³? ~1 EB

Human brain:

~1000 cm³
How much image data is 1000 cm³? ~1000 EB (6nm x 6nm x 40nm)

Tiny brain

Mouse brain:

~1 cm³

How much image data is 1 cm³? ~1 EB

How many brains do we need for statsig?
LARGE-SCALE RECONSTRUCTION

Theta: 262K cores, million-way concurrency

- **Image stitching** on many nodes with existing codes; scalable code in development (parallel granularity: sections or tiles)
- Parallelizing existing **alignment** codes to run at large scale (SEM and MSEM); scalable code in development (parallel granularity: section pairs or region pairs)
- **Scaling FFN training and inference** to thousands of nodes on Theta (TensorFlow+Horovod) (parallel granularity: overlapping subvolumes)
- Ran initial hyperparameter scans on FFN to explore performance (batch size, learning rate, optimizer, number of convolutional layers)
- **Hyperparameter optimization** with Deep Hyper (ongoing)
 - deephyper.readthedocs.io
- Exploring variations of FFN network architecture
- Application of learning in other parts of the pipeline (e.g. image alignment)
- **For Aurora, working with Intel** to optimize codes for future compute architectures
- Evaluation of impact of reduced precision on accuracy and runtime
- Deployed web-based tools for remote annotation (webKnossos) and visualization (neuroglancer) backed by ALCF storage

CONNECTOMICS+HPC FUTURE

Significantly larger scales lie ahead
- Connectomics data: Whole mouse brain; many mouse brains; human brain
- Imaging tech: Many-beam electron microscopy; X-ray imaging (APS)
- Supercomputing: Exascale computing in 1-2 years

Rough projection from today's reconstruction to future whole mouse brain
- 6nm x 6nm x 40nm resolution: ~1 exavoxels
- Sample prep alone will require significant time/many EMs
- Segmentation time on today's system **Theta: 50+ years**
- Segmentation time on future system **Aurora: ~3 years**
 - Worth noting: connectomics will unfortunately not get exclusive access to Argonne's exascale supercomputer
 - **Essential that we improve performance of current methods and develop new methods to accelerate all stages of the reconstruction pipeline**