Argonne Training Program on Extreme-Scale Computing (ATPESC)

Data Analysis and Visualization

Visualization & Data Analysis

Time	Title of presentation	Lecturer	
9:30 am	Data Analysis and Visualization Introduction	Mike Papka <i>ANL/NIU</i> , Joe Insley <i>ANL/NIU</i> , Silvio Rizzi, <i>ANL</i>	
10:15 am	Scalable Molecular Visualization and Analysis Tools in VMD	John Stone UIUC	
11:00 am	Break		
11:15 am	Large Scale Visualization with ParaView	Dan Lipsa Kitware	
12:30 pm	Lunch		
1:30 pm	Visualization and Analysis of HPC Simulation Data with Vislt	Cyrus Harrison LLNL	
2:45 pm	Vapor	Scott Pearse UCAR	
3:30 pm	Break		
3:45 pm	Exploring Visualization with Jupyter Notebooks	 Tommy Marrinan St. Thomas / ANL David Koop NIU Cyrus Harrison LLNL, Matt Larsen LLNL 	
5:00 pm	Adjourn		

Here's the plan...

- Examples of visualizations
- Visualization resources
- Visualization tools and formats
- Data representations
- Visualization for debugging
- In Situ Visualization and Analysis

Physics: Stellar Radiation

Data courtesy of: Lars Bildsten and Yan-Fei Jiang, University of California at Santa Barbara

Physics: Magnetic Confinement Fusion

Data courtesy of Sean Dettrick, TAE Technologies, Inc.

Materials Science / Molecular

Data courtesy of: Subramanian Sankaranarayanan, Argonne National Laboratory

Data courtesy of: Paul Kent, Oak Ridge National Laboratory, Anouar Benali, Argonne National Laboratory

Romero, Argonne National Laboratory

Data courtesy of: Jeff Greeley, Nichols

Cosmology

Data courtesy of: Salman Habib, Katrin Heitmann, and the HACC team, Argonne National Laboratory

8 Argonne Leadership Computing Facility

Cooley: Analytics/Visualization cluster

Peak 223 TF

126 nodes; each node has

- Two Intel Xeon E5-2620 Haswell 2.4 GHz 6-core processors
- NVIDIA Telsa K80 graphics processing unit (24GB)
- 384 GB of RAM

Aggregate RAM of 47 TB

Aggregate GPU memory of ~3TB

Cray CS System

216 port FDR IB switch with uplinks to our QDR infrastructure Mounts the Theta, Eagle, and Grand file systems

Visualization Tools and Data Formats

All Sorts of Tools

Visualization Applications

- -ParaView*
- -EnSight
- **Domain Specific**
- -VMD, PyMol, Ovito, Vapor
- APIs
- -VTK*: visualization
- -ITK: segmentation & registration

GPU performance

-vl3: shader-based volume and particle rendering

Analysis Environments

- -Matlab
- –Parallel R
- Utilities
- -GnuPlot
- –ImageMagick*

ParaView & Vislt vs. vtk

- ParaView & VisIt
- -General purpose visualization applications
- -GUI-based
- -Client / Server model to support remote visualization
- -Scriptable / Extendable
- -Built on top of vtk (largely)
- -In situ capabilities
- vtk
- -Programming environment / API
- -Additional capabilities, finer control
- -Smaller memory footprint
- -Requires more expertise (build custom applications)

Data File Formats (ParaView & Vislt)

VTK	SpyPlot CTH	PNG	VASP
Parallel (partitioned) VTK	HDF5 raw image data	SAF	ZeusMP
VTK MultiBlock	DEM	LS-Dyna	ANALYZ
(MultiGroup, Hierarchical, Hierarchical Box)	VRML	Nek5000	BOV
Legacy VTK	PLY	OVERFLOW	GMV
0	Polygonal Protein Data	paraDIS	Tecplot
Parallel (partitioned) legacy VTK	Bank	PATRAN	Vis5D
EnSight files	XMol Molecule	PFLOTRAN	Xmdv
EnSight Master Server	Stereo Lithography	Pixie	XSF
Exodus	Gaussian Cube	PuReMD	
BYU	Raw (binary)	S3D	
XDMF	AVS	SAS	
	Meta Image	Tetrad	
PLOT2D	Facet	UNIC	
PLOT3D			

כ ZE

Data Representations

Data Representations: Volume Rendering

Data Representations: Glyphs

2D or 3D geometric object to represent point data

Location dictated by coordinate

- 3D location on mesh
- 2D position in table/graph
- Attributes of graphical entity dictated by attributes of data
- color, size, orientation

Data Representations: Contours (Isosurfaces)

A Line (2D) or Surface (3D), representing a constant value Vislt & ParaView:

good at this

vtk:

- same, but again requires more effort

Data Representations: Cutting Planes

Slice a plane through the data – Can apply additional visualization methods to resulting plane VisIt & ParaView & vtk good at this VMD has similar capabilities for some data formats

Data Representations: Streamlines

From vector field on a mesh (needs connectivity) – Show the direction an element will travel in at any point in time. Vislt & ParaView & vtk good at this

Data Representations: Pathlines

From vector field on a mesh (needs connectivity) – Trace the path an element will travel over time. Vislt & ParaView & vtk good at this

Molecular Dynamics Visualization

VMD:

- Lots of domain-specific representations
- Many different file formats
- Animation
- Scriptable

VisIt & ParaView:

Limited support for these types of representations, but improving

VTK:

 Anything's possible if you try hard enough

Visualization as Diagnostics: Color by Thread ID

Visualization as Diagnostics: Color by Thread ID

In Situ Visualization and Analysis

Five orders of magnitude between compute and I/O capacity on Titan Cray system at ORNL

What are the problems?

- Not enough I/O capacity on current HPC systems, and the trend is getting worse.
- If there's not enough I/O, you can't write data to storage, so you can't analyze it: <u>lost science.</u>
- Energy consumption: it costs a lot of power to write data to disk.
- Opportunity for doing better science (analysis) when have access to full spatiotemporal resolution data.

Slide courtesy the SENSEI team <u>www.sensei-insitu.org</u>

Two Frameworks for In Situ Vis and Analysis at ALCF

Ascent

- "Write once, run everywhere" design
- Data model based on VTK from Kitware
- Supports a variety of backends, including ParaView/Catalyst, VisIt/LibSim, ADIOS, Python

- Flyweight design, minimizes dependencies
- Data model based on Conduit from LLNL
- Vis and analysis algorithms implemented in VTK-m

Instrumenting Simulation Codes

Ascent

1. initialize sim

2. if do_insitu bridge::initialize
3. do

- 4. compute new state
- 5. if do_io write plot file
- 6. if do_insitu bridge::execute
- 7. while !done
- 8. if do_insitu bridge::finalize
- 9. finalize sim

Run Ascent

Ascent ascent; ascent.open(); ascent.publish(data); ascent.execute(actions); ascent.close();

SENSEI + ASCENT tutorial at SC19 and SC20

Slides and Virtual Machine available here: https://sensei-insitu.org/tutorials/sc19.html https://ix.cs.uoregon.edu/~hank/sc20/

SENSEI + ASCENT tutorial at SC19 and SC20

Slides and Virtual Machine available here: https://sensei-insitu.org/tutorials/sc19.html https://ix.cs.uoregon.edu/~hank/sc20/

In Situ Analysis and Visualization with

SENSEI + ASCENT tutorial accepted at SC21

Date and time TBD

Exascale Computing Project Software Technology Data and Visualization In situ In situ Apps Post **Output/Artifacts Algorithms** Infrastructure Processing AI PINF New Cinema ASCENT ParaView Algorithms **Fraditional** Vislt Traditional Vislt <u>Output</u> Libsim Algorithms Compression **ParaView** Catalyst ZFP Slide courtesy of the VTK-m Argonne 스 Argonne Leadership Computing Facility 32 ECP ALPINE project

VTK-m's main thrust: a write-once-run-everywhere framework

What is Cinema?

- Cinema is part of an integrated workflow, providing a method of extracting, saving, analyzing or modifying and viewing complex data artifacts from large scale simulations.
 - If you're having difficulty exploring the complex results from your simulation, Cinema can help.
- The Cinema 'Ecosystem' is an integrated set of writers, viewers, and algorithms that allow scientists to export, analyze/modify and view Cinema databases.
 - This ecosystem is embodied in widely used tools (ParaView, Vislt, Ascent) and the database specification.

Catalyst Revised: Rethinking the ParaView In Situ Analysis and Visualization API

Development challenges:

• Requires good understanding of VTK data model and APIs

Build/development challenges:

- Requires a CMake-based build system
- Requires ParaView SDK (cannot use distributed ParaView binaries)
- Simulation build tightly coupled with ParaView version used

Maintenance challenges:

- Changing APIs and data model
- Changing build system

Extracts from slide set courtesy Utkarsh Ayachit, Kitware Inc.

Catalyst Revised: the design

Simplifying the adaptor

----> switch to Conduit

- Avoid need to understand VTK data model
- Provide mechanism to provide data with zero-copy & meta-data to interpret it

Simplifying build and deployment

- Inspired by MPICH ABI compatibility initiative
- Simulations to link against a tiny stub and allow switching of implementation at runtime

Utkarsh Ayachit, Andrew Bauer, Ben Boeckel, Berk Geveci, Ken Moreland, Patrick O'Leary, and Tom Osika: *Catalyst Revised: Rethinking the ParaView In Situ Analysis and Visualization API*, WOIV 2021

QUESTIONS?

Joe Insley insley@anl.gov Silvio Rizzi srizzi@anl.gov Janet Knowles jknowles@anl.gov

Victor Mateevitsi vmateevitsi@anl.gov

www.anl.gov