ATPESC Track 4: Scalable Molecular Visualization and Analysis Tools in VMD

John E. Stone

Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/vmd/

Argonne Training Program on Exascale Computing (ATPESC)

10:15am-11:00pm,

Monday August 9th, 2021

VMD – "Visual Molecular Dynamics"

- 100,000 active users worldwide
- Visualization and analysis of:
 - Molecular dynamics simulations
 - Lattice cell simulations
 - Quantum chemistry calculations
 - Cryo-EM densities, volumetric data
- User extensible scripting and plugins
- http://www.ks.uiuc.edu/Research/vmd/

MD Simulation

VMD Hands-On Tutorials

- http://www.ks.uiuc.edu/Training/Tutorials/#vmd
 - Main VMD tutorial
 - QwikMD simulation preparation and analysis plugin
 - VMD images and movies tutorial
 - Structure check
 - VMD quantum chemistry visualization tutorial
 - Visualization and analysis of CPMD data with VMD
 - Parameterizing small molecules using ffTK

Goal: A Computational Microscope

Study the molecular machines in living cells

Ribosome: target for antibiotics

Poliovirus

VMD: Building A Next Generation Modeling Platform

- Provide tools for simulation preparation, visualization, and analysis
 - Reach cell-scale modeling w/ all-atom MD, coarse grained, Lattice Microbes
 - Improved performance, visual fidelity, exploit advanced technologies (GPUs, VR HMDs)
- Enable hybrid modeling and computational electron microscopy
 - Load, filter, process, interpret, visualize multi-modal structural information
- Connect key software tools to enable state-of-the-art simulations
 - Support new data types, file formats, software interfaces
- Openness, extensibility, and interoperability are VMD hallmarks
 - Reusable algorithms made available in NAMD, for other tools

QwikMD: Guided MD Simulation and Training

Smooths initial learning curve (non-expert users)

Speed up tedious simulation preparation tasks (expert users)

Reproducibility: detailed log of all steps

Interactive preparation, simulation, and analysis

Selected VMD Plugins: Center Developed, and <u>User Developed</u>

Defected vivi	Diriuginis. Con	ici Developea, a	na osci Developea
Analysis	Modeling	Visualization	Collaboration
APBSRun	AutoIonize	Clipping Plane Tool	Remote Control
CatDCD	AutoPSF	Clone Rep	Data Import and Plotting
Contact Map GofRGUI	Chirality	DemoMaster	Data Import
HeatMapper	Cionize	Dipole Watcher	Multiplot
ILSTools	Cispeptide	Intersurf	PDBTool
<u>IRSpecGUI</u>	CGTools	Navigate	MultiText
MultiSeq	Dowser	NavFly	
NAMD Energy	ffTK	MultiMolAnim	Externally Hosted Plugins and Extensions
NAMD Plot		Color Scale Bar	
NetworkView	Inorganic Builder		<u>Check sidechains</u>
NMWiz	MDFF	Remote	<u>MultiMSMS</u>
<u>ParseFEP</u>	Membrane	Palette Tool	Interactive Essential Dynamics
PBCTools	Merge Structs	ViewChangeRender	Mead Ionize
PMEpot PropKa GUI	Molefacture	ViewMaster	Clustering Tool
RamaPlot	Mutator	Virtual DNA Viewer	<u>iTrajComp</u>
RMSD Tool	Nanotube	VMD Movie Maker	Swap RMSD
RMSD Trajectory Tool	Psfgen	Simulation	Intervor
RMSD Visualizer Tool	RESPTool	AlaScan	<u>SurfVol</u>
Salt Bridges	RNAView	AutoIMD	vmdICE
Sequence Viewer Symmetry Tool	Solvate	IMDMenu	MMOD
Timeline	SSRestraints	NAMD GUI	
TorsionPlot			75 Malfila I/O Diverso
VolMap	Topotools	NAMD Server	75 MolFile I/O Plugins:
V OHVIAP		QMTool	structure, trajectory, sequence,

http://www.ks.uiuc.edu/Research/vmd/plugins/

structure, trajectory, sequence, and density map

VMD Visualization Concepts

VMD Approach to Visualization

- Molecular scene is composed of "graphical representations"
- Each representation encapsulates a group of selected atoms, a drawing style, coloring style, and other parameters
- Representations are independent of each other, can be toggled on/off easily, allowing molecular scenes to be builtup incrementally
- VMD atom selection language is shared with its analytical and scripting interfaces

Selection, Filtering

- Most viz tools allow interactive visual picking, menu-driven selections of structure components to display or operate on
- VMD also extensively uses a text-based selection language (think google):

water within 10 of protein and z > 0 nucleic or protein or ions segname BR name "C.*"

- Allows selection on user-defined data fields
- Promotes synergy between interactive and scripting interfaces, visualization and quantitative analysis tasks
- Works well with huge time-varying structures

Structure Visualization

Molecular representations provide different levels of abstraction, atomic detail vs. higher level organizational information

- Atoms, VdW spheres, bonds, ball-stick, ...
- Coarse-grained "beads"
- Ribbons, secondary structure, "cartoon" reps, RNA/DNA
- Molecular surfaces
- Molecular orbitals (quantum chemistry)

Computed Properties

- Smoothing of thermal noise
- Secondary structure
- Hydrogen bonds, salt bridges
- Forces, energies, stress, strain
- Time averaging of electrostatic fields, occupancy maps
- Quality-of-fit cross correlation with cryo-EM density maps
- Normal modes, principal component analysis, essential dynamics
- Cluster simulation trajectory timesteps by structural similarity

Chemoreceptor trimer-ofdimers analysis with Bendix plugin in VMD

Display of Computed Properties on Structures

Per-residue solvent-accessible surface area of Ubiquitin

contour for a helicase on a volumetric slice plane

CheA kinase PCA: first principal component porcupine plot

VMD Shading Comparison: EF-Tu

Trajectory Analysis and

Visualization

Visualization of MD Trajectories

- Allow researchers study trajectories by analyzing force profiles, energies, structural changes, etc.
- Visualization selections, graphics, structure properties, colors can all be recomputed for each trajectory timestep!

Time-Averaged Volumetric Properties

- Compute density, distance, occupancy, potential maps for a frame or averaged over a trajectory
- Example: display binding sites for diffusively bound ions as probability density isosurfaces

tRNA magnesium ion occupancy: VMD volmap plugin

Large System Analysis and

Visualization

VMD Petascale Visualization and Analysis

- Combination of growing system sizes and timescales of simulation trajectories poses a major data size challenge for molecular visualization and analysis
- Parallel I/O rates up to 275 GB/sec on 8192 Cray
 XE6 nodes can read in 231 TB in 15 minutes!
- Analyze/visualize large trajectories too large to transfer off-site:
 - User-defined parallel analysis operations, data types
 - Parallel rendering, movie making
- Supports GPU-accelerated compute nodes for both visualization and analysis tasks:
 - GPU accelerated trajectory analysis w/ CUDA
 - OpenGL and GPU ray tracing for visualization and movie rendering

NCSA Blue Waters Hybrid Cray XE6 / XK7 22,640 XE6 dual-Opteron CPU nodes 4,224 XK7 nodes w/ Telsa K20X GPUs

Parallel VMD currently available on: ORNL Summit and Titan, NCSA Blue Waters, IU Big Red II, CSCS Piz Daint, many similar systems

Petascale Molecular Dynamics I/O and Storage Challenges

- NAMD simulations can produce up to 10TB/day @ 1024 nodes (~20%) of ORNL Summit, more as optimizations raise NAMD performance further
- Petascale science campaigns require months of simulation runs
- Long-term storage of large-fractional petabytes impractical
- Historical "download output files for analysis and visualization" approach is a non-starter at this scale
- Demands visualization and analysis operate on the data in-place on the HPC system, whether post-hoc, in-transit, or in-situ
- Analyses must identify salient features of structure, dynamics, cull data that don't contribute to biomolecular processes of interest

NAMD on Summit, May 2018

NAMD simulations can generate up to 10TB of output per day on 20% of Summit

APRIL 20, 2017
VOLUME 121
NUMBER 15
pubs.ocs.org/JPCB

THE JOURNAL OF PHYSICAL CHEMISTRY

KLAUS SCHULTEN MEMORIAL ISSUE

Proto-Cell Data Challenges

- 1B-atom proto-cell requires nodes with more than TB RAM to build complete model...
- 1B-atom proto-cell binary structure file: 63GB
- Trajectory frame atomic coordinates: 12GB,
 1.2TB/ns of simulation (1 frame per 10ps)
- Routine modeling and visualization tasks are a big challenge at this scale
 - Models contain thousands of atomic-detail components that must work together in harmony
 - Exploit persistent memory technologies to enable "instant on" operation on massive cell-scale models – eliminate several minutes of startup during analysis/visualization of known structure
 - Sparse output of results at multiple timescales will help ameliorate visualization and analysis I/O
 - Data quantization, compression, APIs like ZFP

Running VMD on Distributed Memory Clouds, Clusters, and Supercomputers with MPI

Using VMD MPI Builds

- See "Running VMD on Supercomputers" section in the VMD tutorial
- Run one MPI rank (VMD process) per compute node
 - Each rank uses all CPU cores and all GPU accelerators they find
 - GPUs are shared between graphics/visualization and computing tasks
- Parallel VMD Scripting APIs:
 - "parallel" script subcommands, e.g., "parallel for ...":
 - "nodename", "noderank", "nodecount", "barrier", "allgather", "allreduce", "for"
 - Available even in non-MPI builds, for single-node script compatibility
- Work scheduling:
 - Intra-node work scheduled via multithreading, CUDA, etc.
 - Inter-node distributed memory work scheduling of user analysis/viz scripts is provided by built-in load balancing implementation for VMD

Parallel MDFF Cross Correlation Analysis on Cray XK7

Rabbit Hemorrhagic Disease Virus (RHDV)					
Traj. frames	10,000				
Structure component selections	720				
Single-node XK7 (projected)	336 hours (14 days)				
128-node XK7	3.2 hours 105x speedup				
2048-node XK7	19.5 minutes 1035x speedup				

Calculation of 7M CCs would take **5 years** using serial CPU algorithm!

Stone et al., Faraday Discuss., 169:265-283, 2014.

VMD EGL Performance on Amazon EC2 Cloud

MPI Ranks	EC2 "G2.8xlarge" GPU Instances	HIV-1 movie rendering time (sec), (I/O %) 3840x2160 resolution
1	1	626s (10% I/O)
2	1	347s (19% I/O)
4	1	221s (31% I/O)
8	2	141s (46% I/O)
16	4	107s (64% I/O)
32	8	90s (76% I/O)

Performance at 32 nodes reaches ~48 FPS

High performance molecular visualization: In-situ and parallel rendering with EGL. J. E. Stone, P. Messmer, R. Sisneros, and K. Schulten. *2016 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW)*, pp. 1014-1023, 2016.

64M atom HIV-1 capsid simulation rendered via EGL

Trajectory I/O on Parallel Filesystems

- Don't use old/inefficient trajectory file formats if they can be avoided
- DO use file formats like DCD, NetCDF, JS, that permit efficient strided reads
- DO enable file striping for large trajectory files (more I/O parallelism)
- DO write simulation outputs to multiple files (more I/O parallelism)
- DO use VM page-aligned file formats that permit kernel-bypass direct-I/Os, and support for technologies like GPU-Direct Storage
- VMD has read trajectories at up to 71GB/sec from JS files on DGX-2 dense multi-GPU nodes with GDS, w/ Weka I/O

High Fidelity Ray Tracing for Interactive

and Cinematic Visualization

High Fidelity Ray Tracing

- Advanced rendering techniques save scientists time, produce images that are easier to interpret
- Ambient Occlusion, Depth of Field, high quality transparency, instancing,
 Interactive RT on laptops, desk, cloud,
- and remote supercomputers
- Large-scale MPI parallel rendering: in situ or post hoc visualization tasks
- Stereoscopic panorama and full-dome projections
- **Omnidirectional VR: YouTube, HMDs**
- Built-in ray tracing engines:
 - Tachyon: cross-platform RT
 - NVIDIA OptiX: GPU RTX-accelerated
 - Intel OSPRay: CPU x86-optimized

VMD/OptiX all-atom Chromatophore

Lighting Comparison, STMV Capsid

Two lights, no shadows

Ambient occlusion + two lights, 144 AO rays/hit

Geometrically Complex Scenes

Ray tracing techniques well matched to molecular viz. needs:

- Curved geometry, e.g. spheres, cylinders, toroidal patches, easily supported
- Greatly reduced memory footprint vs. polygonalization
- Runtime scales only moderately with increasing geometric complexity
- Occlusion culling is "free", RT acceleration algorithms do this and much more

Goal: Intuitive interactive viz. in crowded molecular complexes

Satellite Tobacco Mosaic Virus Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

VMD w/ OptiX RTX Ray Tracing

- Interactive RT on laptops, desktops, and cloud
- Large-scale parallel rendering: in situ or post hoc visualization
- Remote ray tracing with NvPipe video streaming
- Stereoscopic panoramic and full-dome projections
- Omnidirectional VR for YouTube, VR HMDs
- VMD+OptiX NGC container: https://ngc.nvidia.com/registry/
- GPU memory sharing via NVLink
- In-progress:

Denoising: faster turnaround w/ AO, DoF, etc

GPU-Accelerated Molecular Visualization on Petascale Supercomputing Platforms.

J. E. Stone, K. L. Vandivort, and K. Schulten. UltraVis'13, pp. 6:1-6:8, 2013.

Visualization of Energy Conversion Processes in a Light Harvesting Organelle at

Atomic Detail. M. Sener, et al. SC'14 Visualization and Data Analytics Showcase, 2014.

Chemical Visualization of Human Pathogens: the Retroviral Capsids. J. R. Perilla, B.-C. Goh, J. E. Stone, and K. Schulten. SC'15 Visualization and Data Analytics Showcase, 2015.

Atomic Detail Visualization of Photosynthetic Membranes with GPU-Accelerated Ray

Tracing. J. E. Stone et al., J. Parallel Computing, 55:17-27, 2016.

Iracing. J. E. Stone et al., J. Parallel Computing, 55:17-27, 2016.

Immersive Molecular Visualization with Omnidirectional Stereoscopic Ray Tracing and

Remote Rendering J. E. Stone, W. R. Sherman, and K. HPDAV, IPDPSW, pp. 1048-1057, 2016.

VMD/OptiX GPU Ray Tracing of all-atom Chromatophore w/ lipids.

VMD/OptiX RTX Acceleration

VMD OptiX RT performance on Quadro RTX 6000

APRIL 20, 2017
VOLUME 121
NUMBER 15
pubs.acs.org/JPCB

THE JOURNAL OF PHYSICAL CHEMISTRY

KLAUS SCHULTEN MEMORIAL ISSUE

THE FIRST LIGHT In pursuit of the most distant galaxies PAGE 554 CROSSING THE BORDERS International collaborations make the most impact

A SITTING TARGET An indirect hit on 'undruggable' KRAS protein

www.acs.org

VMD Application Examples and

Implementation Details

VMD Cinematic Molecular Visualization and Rendering: "Birth of Planet Earth" Fulldome Show

https://www.youtube.com/watch?v=NTgAok6n7I4

VMD RTX Performance Gains for "BoPE" Content:

- BoPE production used Quadro M6000 (Maxwell) GPUs
- BoPE w/ OptiX 6.5 on Quadro RTX 6000 up to 15x faster!

Multiscale modeling and cinematic visualization of photosynthetic energy conversion processes from electronic to cell scales.

M. Sener, S. Levy, J. E. Stone, et al., J. Parallel Computing, 2021.

Omnidirectional Stereoscopic Ray Tracing

- Ray trace 360° images and movies for Desk and VR HMDs: Oculus, Vive, Cardboard
- Stereo spheremaps or cubemaps allow very highframe-rate interactive OpenGL display
- AO lighting, depth of field, shadows, transparency, curved geometry, ...
- Summit 6x Tesla V100 GPU nodes:
 - Render many omni-stereo viewpoints, no acceleration structure rebuilds, tens of frames/sec per-node!
 - OptiX multi-GPU rendering, NVLink compositing and data distribution, etc...
 - Future: Al for warping between views

Atomic Detail Visualization of Photosynthetic Membranes with GPU-Accelerated Ray Tracing. J. E. Stone, et al. J. Parallel Computing, 55:17-27, 2016.

Immersive Molecular Visualization with Omnidirectional Stereoscopic Ray Tracing and Remote Rendering. J. E. Stone, W. R. Sherman, and K. Schulten. High Performance Data Analysis and Visualization Workshop, IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1048-1057, 2016.

Density Map Segmentation

VMD GPU-accelerated density map segmentation of GroEL

Earnest, et al. J. Physical Chemistry B, 121(15): 3871-3881, 2017.

Evaluating Quality-of-Fit for Structures Solved by Hybrid Fitting Methods

Compute Pearson correlation to evaluate quality-of-fit between a reference cryo-EM density map and a **simulated density map** from an **all-atom structure**.

MDFF Cross Correlation Timeline

Regions with poor fit

Regions with good fit

VMD Tesla V100 Cross Correlation Performance

Rabbit Hemorrhagic Disease Virus: 702K atoms, 6.5Å resolution Volta GPU architecture almost 2x faster than previous gen Pascal:

Application and Hardware platform	Runtime, Speed	lup vs. Chimera,	VMD+GPU
Chimera Xeon E5-2687W (2 socket) [1]	15.860s,	1x	
VMD-CUDA IBM Power8 + 1x Tesla K40 [2]	0.488s,	32x	0.9x
VMD-CUDA Intel Xeon E5-2687W + 1x Quadro K6000 [1,2]	0.458s,	35x	1.0x
VMD-CUDA Intel Xeon E5-2698v3 + 1x Tesla P100	0.090s,	176x	5.1x
VMD-CUDA IBM Power8 "Minsky" + 1x Tesla P100	0.080s,	198x	5.7x
VMD-CUDA Intel Xeon E5-2697Av4 + 1x Tesla V100	0.050s,	317x	9.2x
VMD-CUDA IBM Power9 "Newell" + 1x Tesla V100	0.049s,	323x	9.3x

[1] GPU-Accelerated Analysis and Visualization of Large Structures Solved by Molecular Dynamics Flexible Fitting. J. E. Stone, R. McGreevy, B. Isralewitz, and K. Schulten. Faraday Discussions 169:265-283, 2014. [2] Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to GPU-Accelerated OpenPOWER Platforms. J. E. Stone, A.-P. Hynninen, J. C. Phillips, K. Schulten. International Workshop on OpenPOWER for HPC (IWOPH'16), LNCS 9945, pp. 188-206, 2016.

Clustering Analysis of Molecular Dynamics Trajectories: Requires I/O+Memory for All-Pairs of Trajectory Frames

GPU-Accelerated Molecular Dynamics Clustering Analysis with OpenACC. J.E. Stone, J.R. Perilla, C. K. Cassidy, and K. Schulten. In, Robert Farber, ed., Parallel Programming with OpenACC, Morgan Kaufmann, Chapter 11, pp. 215-240, 2016.

VMD Examples from In-Progress ANARI Renderers

https://www.khronos.org/anari ANARI Tachyon Ray Tracer **OSPRay Path Tracer OptiX Path Tracer**

VMD+Folding@Home w/ NVIDIA Omniverse+Maya

- https://blogs.nvidia.com/blog/2020/10/07/foldingathome-omniverse-coronavirus/
- Movie (YouTube): https://youtu.be/Y9N_lmvwnUl

https://www.nytimes.com/interactive/2020/health/coronavirus-unveiled.html

A simulation of four spike proteins, each bending on three hinges. Sören von Bülow, Mateusz Sikora and Gerhard Hummer. Max Planck Institute of Biophysics

Visualizing High-Dimensional Data:

t-SNE plot of SARS-CoV2 Simulation Campaign

Al-Driven Multiscale Simulations Illuminate Mechanisms of SARS-CoV-2 Spike Dynamics.
L. Casalino, A. Dommer, Z. Gaieb, et al., IJHPCA, 2021.
https://dx.doi.org/10.1177/10943420211006452

Al-Driven Multiscale Simulations Illuminate Mechanisms of SARS-CoV-2 Spike Dynamics. L. Casalino, A. Dommer, Z. Gaieb, et al., IJHPCA, 2021.

https://dx.doi.org/10.1177/10943420211006452

Acknowledgements

- Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign
- CUDA Center of Excellence, University of Illinois at Urbana-Champaign
- NVIDIA CUDA and OptiX teams
- Intel OSPRay team
- Funding:
 - NIH support: P41-GM104601
 - DOE INCITE, ORNL Summit
 - NSF Blue Waters:
 NSF OCI 07-25070, PRAC "The Computational Microscope",
 ACI-1238993, ACI-1440026

"When I was a young man, my goal was to look with mathematical and computational means at the inside of cells, one atom at a time, to decipher how living systems work. That is what I strived for and I never deflected from this goal." – Klaus Schulten