
exascaleproject.org

See slide 2 for
license details

Motivation and Overview of Best
Practices in HPC Software Development

David E. Bernholdt
Oak Ridge National Laboratory

Software Productivity and Sustainability track, ATPESC 2021

Contributors: David E. Bernholdt (ORNL), Anshu Dubey (ANL),
Katherine M. Riley (ANL)

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Rinku K. Gupta, and David M.

Rogers, Software Productivity and Sustainability track, in Argonne Training Program on Extreme-Scale
Computing (ATPESC), online, 2021. DOI: 10.6084/m9.figshare.15130590

• Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial…

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.15130590

3

Science through computing is,
at best,

as credible as the software that produces it!

4

The Success of Computational Science Creates
the Challenges of Computational Science
• Positive feedback loop

– More complex codes, simulations
and analysis

– More moving parts that need to interoperate
– Variety of expertise needed – the only tractable

development model is through separation of concerns
– It is more difficult to work on the same software in different roles without a software

engineering process

• Onset of higher platform heterogeneity
– Requirements are unfolding, not known a priori
– The only safeguard is investing in flexible design and robust software engineering

process

Better Scientific
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More Hardware
Resources

Supercomputers change fast
Especially now!

5

Challenges Developing Scientific Applications Today

Technical
• All parts of the model and software

system can be under research
• Requirements change throughout the

lifecycle as knowledge grows
• Verification complicated by floating

point representation
• Real world is messy, so is the

software
• Increasing architectural diversity

Sociological
• Competing priorities and incentives

– Sponsors often care more about
scientific publications than software
per se

– Balancing development and
maintenance

• Limited resources
• Need for interdisciplinary interactions

– Many different kinds of expertise to be
successful

6

High-Consequence Software-Related Scientific Failures

Therac-25 (1985-1987)
• Computer-controlled radiation therapy system

• Poor software design, development and
testing practices allowed flaws that let to at
least six cases of substantial radiation
overdoses, three fatal

Mars Climate Orbiter (1999)
• Incorrect trajectory adjustment caused loss of

the orbiter as it was supposed to enter
Martian orbit

• Discrepancy in the units used in two different
software components

• One component didn’t follow specifications
• Inadequate testing at the interface

• Concerns raised earlier in the mission were
ignored because they weren’t properly
documented

Just two of many examples

7

More Subtle Impacts on Scientific
Productivity
• In 2005, the FLASH astrophysics team was

offered a unique opportunity to access one
of the biggest machines in the world at that
time (BG/L) for a dedicated run

• Short notice to prepare
– < 1month to get ready for 1.5 week run

• Quick and dirty development of particle capability in code
• Error in tracking particles resulted in duplicated tags from round-off
• Had to develop post-processing tools to correctly identify trajectories

– 6 months to process results

FLASH had a software process in place. It was tested regularly. This was one
instance when the full process could not be applied because of time constraints.

8

Technical Debt

Like monetary debt, the more you accumulate, the harder it is to pay off
• Increases cost of maintenance
• Parts of software may become unusable over time
• Inadequately verified software produces questionable results
• Increases ramp-up time for new developers
• Overall, reduces software and science productivity

The implied cost of additional rework caused by
choosing an easy (limited) solution now instead of

using a better approach that would take longer.
-- Wikipedia

9

Scientific Facilities Provide Valuable
Resources

• Major supercomputers often cost O($100M)
• All cost millions more to operate, annually
• Significant allocations on large supercomputers can

be worth millions
• Even if you don’t pay the $ you have to spend the

time and effort to get the allocation
• Sponsors’ concern: Are you being a good steward

of the resources?
• Your concern: Are you getting the most science

possible out of your work (aka scientific
productivity)?

10

Good scientific process
requires

good software practices

Good software practices
increase

scientific productivity

Software sustainability
increases

scientific productivity

Good software practices
increase

software sustainability

11

So, What Are Good Software Practices?

• There is no fixed, universally agreed set of best practices for scientific software
– Specifics of what’s appropriate will depend on the software, how it is used, and the team

• Let’s look at a few recommendations from different perspectives…

12

Example 1: Best Practices for Scientific Computing (1/2)

1. Write programs for people, not computers.
a. A program should not require its readers to

hold more than a handful of facts in memory at
once.

b. Make names consistent, distinctive, and
meaningful.

c. Make code style and formatting consistent.

2. Let the computer do the work.
a. Make the computer repeat tasks.
b. Save recent commands in a file for re-use.
c. Use a build tool to automate workflows.

3. Make incremental changes.
a. Work in small steps with frequent feedback

and course correction.
b. Use a version control system.
c. Put everything that has been created manually

in version control.

4. Don't repeat yourself (or others).
a. Every piece of data must have a single

authoritative representation in the system.
b. Modularize code rather than copying and

pasting.
c. Re-use code instead of rewriting it.

5. Plan for mistakes.
a. Add assertions to programs to check their

operation.
b. Use an off-the-shelf unit testing library.
c. Turn bugs into test cases.
d. Use a symbolic debugger.

Wilson, et al., (2014) https://doi.org/10.1371/journal.pbio.1001745

https://doi.org/10.1371/journal.pbio.1001745

13

Example 1: Best Practices for Scientific Computing (2/2)

6. Optimize software only after it works
correctly.

a. Use a profiler to identify bottlenecks.
b. Write code in the highest-level language

possible.

7. Document design and purpose, not
mechanics.

a. Document interfaces and reasons, not
implementations.

b. Refactor code in preference to explaining how
it works.

c. Embed the documentation for a piece of
software in that software.

8. Collaborate.
a. Use pre-merge code reviews.
b. Use pair programming when bringing

someone new up to speed and when tackling
particularly tricky problems.

c. Use an issue tracking tool.

Wilson, et al., (2014) https://doi.org/10.1371/journal.pbio.1001745

https://doi.org/10.1371/journal.pbio.1001745

14

Example 2: Good Enough Practices in Scientific Computing (1/2)

1.Data management
a. Save the raw data.
b. Ensure that raw data are backed up in more

than one location.
c. Create the data you wish to see in the world.
d. Create analysis-friendly data.
e. Record all the steps used to process data.
f. Anticipate the need to use multiple tables,

and use a unique identifier for every record.
g. Submit data to a reputable DOI-issuing

repository so that others can access and cite
it.

6. Manuscripts (out of order to save space)
a. Write manuscripts using online tools with rich

formatting, change tracking, and reference
management.

b. Write the manuscript in a plain text format
that permits version control.

Wilson, et al., (2017) https://doi.org/10.1371/journal.pcbi.1005510

2. Software
a. Place a brief explanatory comment at the

start of every program.
b. Decompose programs into functions.
c. Be ruthless about eliminating duplication.
d. Always search for well-maintained software

libraries that do what you need.
e. Test libraries before relying on them.
f. Give functions and variables meaningful

names.
g. Make dependencies and requirements

explicit.
h. Do not comment and uncomment sections of

code to control a program's behavior.
i. Provide a simple example or test data set.
j. Submit code to a reputable DOI-issuing

repository.

https://doi.org/10.1371/journal.pcbi.1005510

15

Example 2: Good Enough Practices in Scientific Computing (2/2)

3. Collaboration
a. Create an overview of your project.
b. Create a shared "to-do" list for the project.
c. Decide on communication strategies.
d. Make the license explicit.
e. Make the project citable.

4.Project organization
a. Put each project in its own directory, which is

named after the project.
b. Put text documents associated with the

project in the doc directory.
c. Put raw data and metadata in a data

directory and files generated during cleanup
and analysis in a results directory.

d. Put project source code in the src directory.
e. Put external scripts or compiled programs in

the bin directory.
f. Name all files to reflect their content or

function.

Wilson, et al., (2017) https://doi.org/10.1371/journal.pcbi.1005510

5. Keeping track of changes
a. Back up (almost) everything created by a

human being as soon as it is created.
b. Keep changes small.
c. Share changes frequently.
d. Create, maintain, and use a checklist for

saving and sharing changes to the project.
e. Store each project in a folder that is mirrored

off the researcher's working machine.
f. Add a file called CHANGELOG.txt to the

project's docs subfolder.
g. Copy the entire project whenever a

significant change has been made.
h. Use a version control system.

https://doi.org/10.1371/journal.pcbi.1005510

16

Example 3: Linux Foundation Core Infrastructure Initiative (CII)
Best Practices Badging Program

• Not specifically intended for scientific software
• Three levels

• Passing focuses on best practices that well-run FLOSS projects typically already follow.
Getting the passing badge is an achievement; at any one time only about 10% of projects
pursuing a badge achieve the passing level.

• Silver is a more stringent set of criteria than passing but is expected to be achievable by
small and single-organization projects.

• Gold is even more stringent than silver and includes criteria that are not achievable by small
or single-organization projects.

• Combination of MUST and SHOULD criteria

https://bestpractices.coreinfrastructure.org/en

https://bestpractices.coreinfrastructure.org/en

17

CII Best Practices Criteria Summary
• Basics

– Basic project website content (P, S)
– FLOSS license (P)
– Documentation (P, S)
– Project oversight (S, G)
– Accessibility and internationalization (S)

• Change control
– Public version controlled source repo. (P, G)
– Unique version numbering (P)
– Release notes (P)
– Previous versions (S)

• Reporting
– Bug-reporting process (P, S)
– Vulnerability reporting process (P, S)

• Quality
– Working build system (P, S, G)
– Automated test suite (P, S, G)
– New functionality testing (P, S)
– Warning flags (P, S)
– Coding standards (S, G)
– Installation system (S)
– Externally-maintained components (S)

• Security
– Secure development knowledge (P, S)
– Use basic good crypto. practices (P, S, G)
– Secured delivery against MITM attacks (P, G)
– Publicly known vulnerabilities fixed (P)
– Secure release (S)

• Analysis
– Static code analysis (P, S)
– Dynamic code analysis (P, S, G)

(P, S, G) denotes additional criteria required
at passing, silver, or gold certification levels
Each topic area listed will have one or more
specific criteria

18

Software Engineering Advice Often Needs Adaptation for
Scientific Software
• The CII Best Practices are a good example of software engineering advice “in

the wild”
• Experiences reported in the wild often don’t consider the special nature of

scientific software
• But that doesn’t mean we should ignore all of the software engineering

experience
– Many useful concepts, approaches, and tools we can just adopt

• Some approaches may need to be adapted to work for scientific software
– Find out how colleagues have addressed the challenges you’re facing

• Probably you will find multiple ways
– In the end, some approaches may not work well

• Don’t be afraid to experiment with adaptations
– Consider using the PSIP process (coming up)

19

How Much (Time, Effort) Should I Spend on Software Engineering?

Your project should include “just enough” software
engineering so that you can meet your short-term
and longer-term scientific goals effectively

20

Continual, Incremental Software Process Improvement

Target: your project should include “just enough”
software engineering so that you can meet your
short-term and longer-term scientific goals effectively

1. Identify your team’s “pain points” in your
software development processes

2. Set a goal for something to improve
– Target processes and behaviors, not just tasks
– Pick something that you can address in a few

months that will give you a noticeable benefit

3. Agree on a plan to address it, identify
markers of progress and what is “done”

– Write them down

4. Work your plan, track your progress

5. When you are done, celebrate…

…then pick a new pain point to address

C
os

t

ProgressStart Finish

Old Process
New Process

The new process costs something to
implement, but it pays off over time

Productivity and Sustainability Improvement Planning
https://bssw.io/psip

https://bssw.io/psip

21

About Today’s Tutorial

• There are many useful topics that could help you improve your scientific software
development process

• We’re going to focus on a few where the software engineering advice in the wild
typically doesn’t address scientific software
– Project management
– Collaboration around software development
– Designing software for flexibility and extensibility
– Testing strategies for complex software systems
– Systematic refactoring of large, complex software systems
– Continuous integration testing
– Reproducibility

22

Agenda (Morning)
Time (CDT) Module Title Presenter

9:30 AM 0 Introduction and Setup David E. Bernholdt (ORNL)

9:40 AM 1 Motivation and Overview of Best Practices in HPC
Software Development David E. Bernholdt (ORNL)

10:00 AM 2 Agile Methodologies Rinku K. Gupta (ANL)

10:30 AM 3 Git Workflows Rinku K. Gupta (ANL)

11:00 AM Break

11:15 AM 4 Scientific Software Design Anshu Dubey (ANL)

11:45 AM 5 Improving Reproducibility Through Better Software
Practices David E. Bernholdt (ORNL)

12:30 PM 6 Agile Methodologies Redux Rinku K. Gupta (ANL)

12:45 PM Lunch

The agenda is also available on the tutorial web page.
Visit https://bssw-tutorial.github.io and click on the
link for today’s tutorial

https://bssw-tutorial.github.io/

23

Agenda (Afternoon)
Time (CDT) Module Title Presenter

12:45 PM Lunch

1:45 PM 7 Software Testing Introduction David M. Rogers (ORNL)

2:05 PM 8 Testing Walkthrough David M. Rogers (ORNL)

2:15 PM 9 Testing Complex Software David M. Rogers (ORNL)

2:35 PM 10 Continuous Integration David M. Rogers (ORNL)

3:00 PM Break

3:15 PM 11 Refactoring Scientific Software Anshu Dubey (ANL)

4:15 PM 12 Summary David E. Bernholdt (ORNL)

4:30 PM Q&A

4:45 PM Adjourn

The agenda is also available on the tutorial web page.
Visit https://bssw-tutorial.github.io and click on the
link for today’s tutorial

https://bssw-tutorial.github.io/

	Motivation and Overview of Best Practices in HPC Software Development
	License, Citation and Acknowledgements
	Slide Number 3
	The Success of Computational Science Creates the Challenges of Computational Science
	Challenges Developing Scientific Applications Today
	High-Consequence Software-Related Scientific Failures
	More Subtle Impacts on Scientific Productivity
	Technical Debt
	Scientific Facilities Provide Valuable Resources
	Slide Number 10
	So, What Are Good Software Practices?
	Example 1: Best Practices for Scientific Computing (1/2)
	Example 1: Best Practices for Scientific Computing (2/2)
	Example 2: Good Enough Practices in Scientific Computing (1/2)
	Example 2: Good Enough Practices in Scientific Computing (2/2)
	Example 3: Linux Foundation Core Infrastructure Initiative (CII) Best Practices Badging Program
	CII Best Practices Criteria Summary
	Software Engineering Advice Often Needs Adaptation for Scientific Software
	How Much (Time, Effort) Should I Spend on Software Engineering?
	Continual, Incremental Software Process Improvement
	About Today’s Tutorial
	Agenda (Morning)
	Agenda (Afternoon)

