

Handling

Scanning & Reconstruction

Publishing

Towards high-throughput 3D insect capture

for species discovery and diagnostics

Chuong Nguyen¹, Matt Adcock¹, Stuart Anderson¹, David Lovell², Nicole Fisher³ and John La Salle⁴

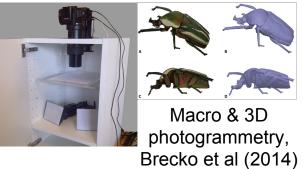
eScience 2017, BigDig 24 Oct - High Throughput Digitization for Natural History Collections

CSIRO Data61 - Quantitative Imaging

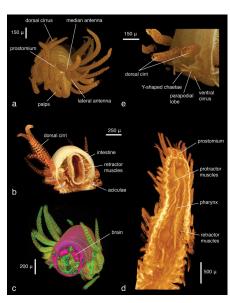
- 1. Introduction
 - a. Digitisation and 3D photogrammetry
 - b. Pros and cons of 3D photogrammetry, and common issues
- 2. Proposed solutions for high-throughput 3D capture
 - a. Specimen handling
 - b. Targetless scanning and high speed image acquisition
 - c. "Human in the loop" 3D reconstruction
 - d. 3D annotation and Augmented Reality
- 3. Conclusion



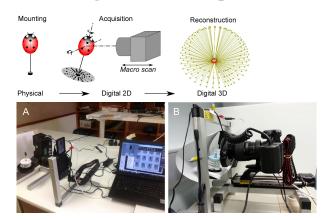
Digitisation of natural collections

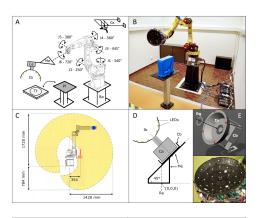


2D Mosaicing, Mantle et al (2012)



Rotational SEM, Cheung et al (2013)


Large scale CT, Stanley & Blackburn (2017)


MicroCT, Faulwetter et al (2013)

3D photogrammetry



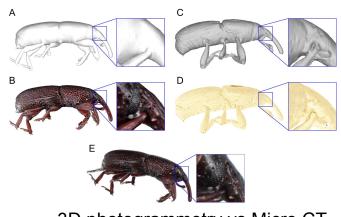
Macro & Visual Hull, Nguyen et al (2014)

Multiview & Photometric Stereo Martins et al (2015)

1. Introduction

- a. Digitisation and 3D photogrammetry
- b. Pros and cons of 3D photogrammetry, and common issues
- 2. Proposed solutions for high-throughput 3D capture
 - a. Specimen handling
 - b. Targetless scanning and high speed image acquisition
 - c. "Human in the loop" 3D reconstruction
 - d. 3D annotation and Augmented Reality
- 3. Conclusion

Pros of 3D photogrammetry


- Low cost (\$10K vs \$1000K) and DIY
- Fast (2.4hrs vs 24hrs) and safe (no radiation)
- True color

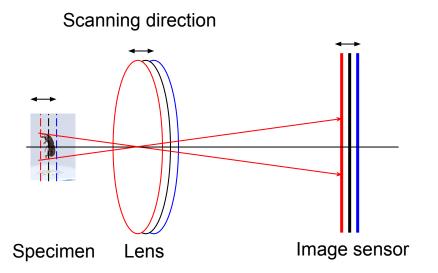
InsectScan^{3D}

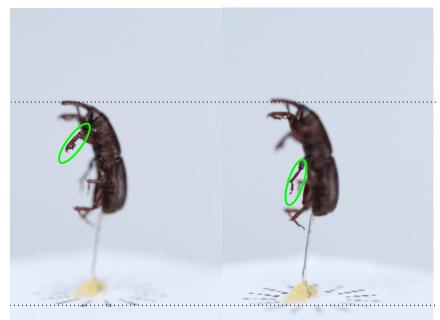
Skyscan 1172 Micro CT

3D photogrammetry vs Micro CT

Cons of 3D photogrammetry

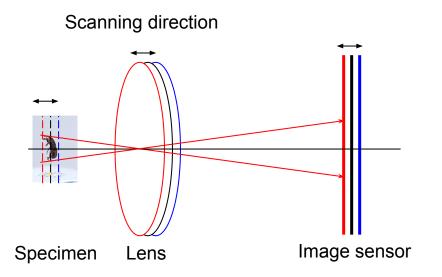
- Trouble with thin/transparent/hairy/reflective/textureless parts
- No internal structure

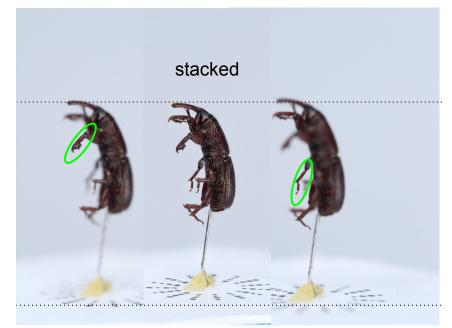



Micro CT, J.Alba-Tercedor et al (2016)

Cons of 3D photogrammetry (continue)

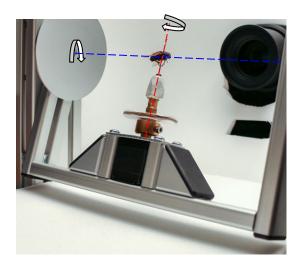
- Macro focal stacking slow and erroneous*
- 3D reconstruction unreliable*



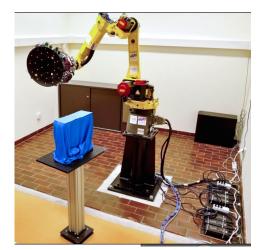


Cons of 3D photogrammetry (continue)

- Macro focal stacking slow and erroneous*
- 3D reconstruction unreliable*


Cons of 3D photogrammetry (continue)

Camera parameters and poses missing/inaccurate*



ZooSphere's pan-tilt rig

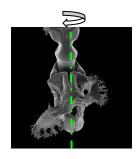
Martins 2015's R2obbie-3D

InsectScan3D

Other common issues

Specimen handling:

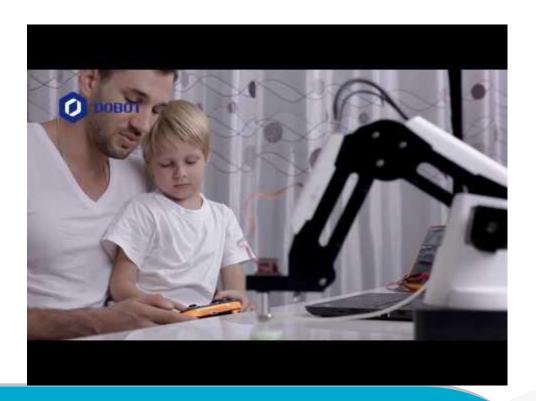
- Manual and labor intensive handling*
- Large scale (~12M) collections, "w/o accidents"*
- Dealing with labels



Other common issues

Data curation and publication:

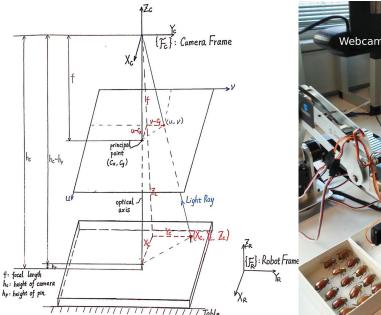
- 3D editing and annotation
- Non-standard embedding in scientific publications
- Emerging visualisation platforms (<u>Web3D Sketchfab</u>, Virtual Reality Oculus, Augmented Reality - Hololens)
- 2D & 3D catalogue and search

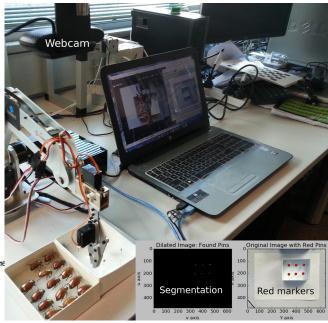


- 1. Introduction
 - a. Digitisation and 3D photogrammetry
 - b. Pros and cons of 3D photogrammetry, and common issues
- 2. Proposed solutions for high-throughput 3D capture
 - a. Specimen handling
 - b. Targetless scanning and high speed image acquisition
 - c. "Human in the loop" 3D reconstruction
 - d. 3D annotation and Augmented Reality
- 3. Conclusion

Automatic specimen handling

 Affordable desktop robots from \$1.5K

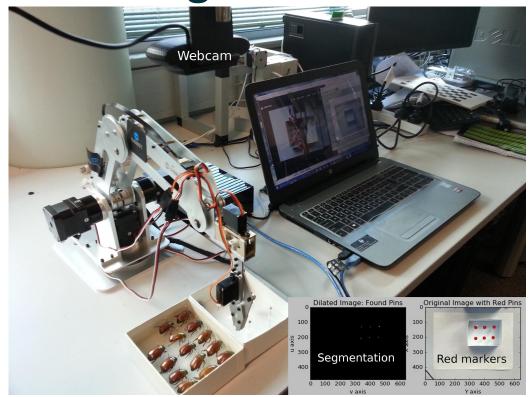




Automatic specimen handling

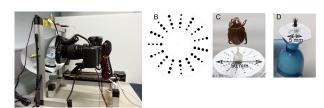
 Affordable desktop robots from \$1.5K

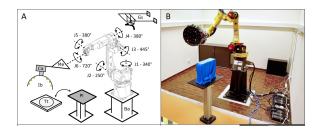
- 2D & 3D camera
- Computer vision
- Control logic



Automatic specimen handling

- Affordable desktop robots from \$1.5K
- 2D & 3D camera
- Computer vision
- Control logic
- Lots of engineering

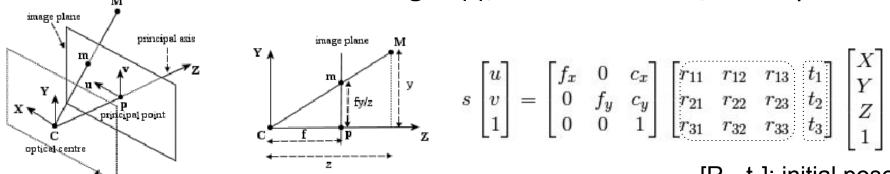



- 1. Introduction
 - a. Digitisation and 3D photogrammetry
 - b. Pros and cons of 3D photogrammetry, and common issues
- 2. Proposed solutions for high-throughput 3D capture
 - a. Specimen handling
 - b. Targetless scanning and high speed image acquisition
 - c. "Human in the loop" 3D reconstruction
 - d. 3D annotation and Augmented Reality
- 3. Conclusion

Target-less 3D reconstruction

Nguyen et al (2014)

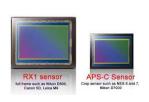
Martins et al (2015)


InsectScan V2

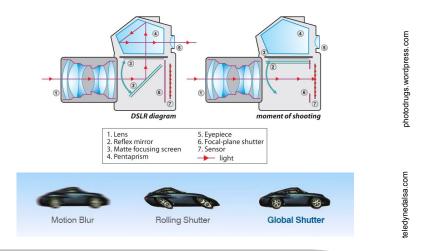
Target-less 3D reconstruction (cont.)

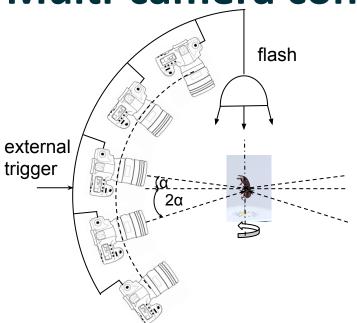
1. Camera calibration: focal length (f), distortion coef., initial pose

2. Posegeneration

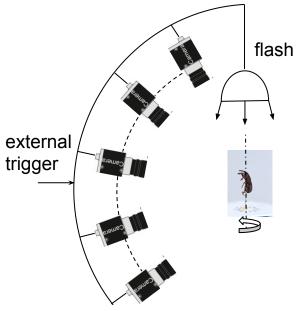

 $[R_v(\alpha)^*R_x(\beta)^*R_0, t_0^*+dt]$: new pose and pan (x) tilt (y) angles α , β and movement dt

High speed & resolution image acquisition

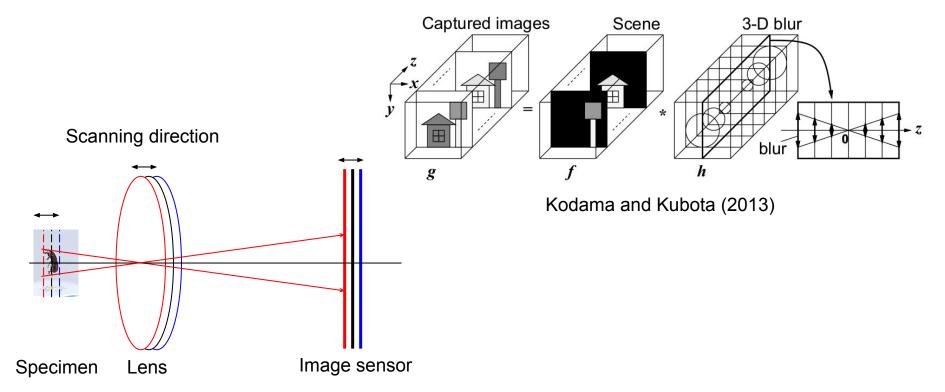

- DSLR camera versus lab camera (\$3K)
- Mechanical/electronic/ rolling/global shutters



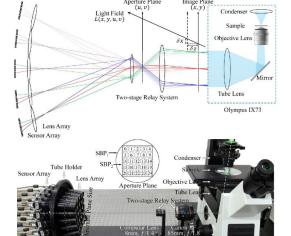
30MP/7fps vs 12MP/30fps



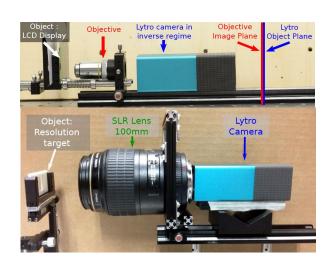
Multi-camera consideration


DSLR cameras sync. uncertainty ~100ms slow continuous run

Lab cameras sync. uncertainty <1ms fast continuous run



Multi-focus stacking using light field

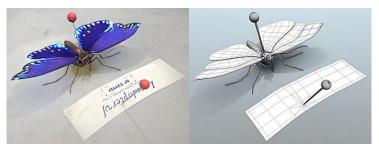


Macro focal stack versus light field imaging

Resolution versus depth of focus

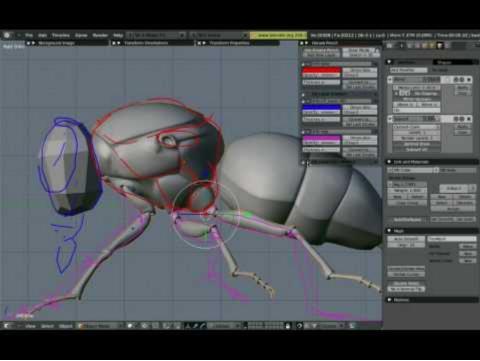
5x5 multi camera light field microscopy (19MP), Lin et al (2015)

1st Lytro camera (11MP), Mignard-Debise & Ihrke (2015)


Our Lytro Illum (40MP) & macro lens

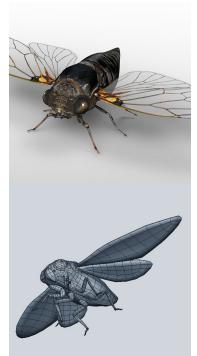
- 1. Introduction
 - a. Digitisation and 3D photogrammetry
 - b. Pros and cons of 3D photogrammetry, and common issues
- 2. Proposed solutions for high-throughput 3D capture
 - a. Specimen handling
 - b. Targetless scanning and high speed image acquisition
 - c. "Human in the loop" 3D reconstruction
 - d. 3D annotation and Augmented Reality
- 3. Conclusion

Artistic modeling



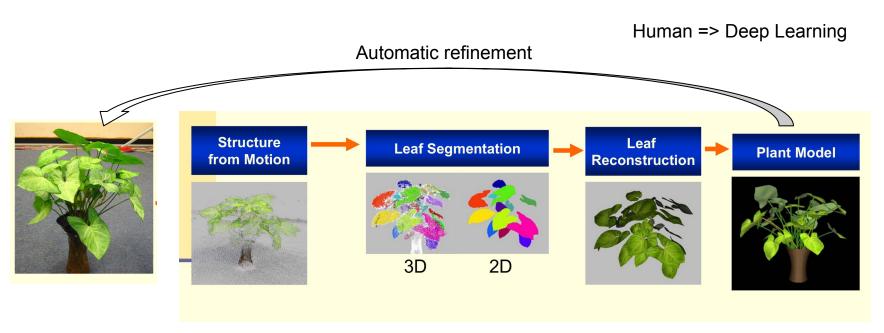
A butterfly in blender, Sebastian König (2008)

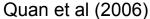
"Fly" Modeling in Blender, Sebastian König (2009)



Scanned model versus artistic model

3D scanned cicada




3D hand-modelled cicada

Interactive reconstruction with part library?

"Human in the loop" reconstruction

- 1. Introduction
 - a. Digitisation and 3D photogrammetry
 - b. Pros and cons of 3D photogrammetry, and common issues
- 2. Proposed solutions for high-throughput 3D capture
 - a. Specimen handling
 - b. Targetless scanning and high speed image acquisition
 - c. "Human in the loop" 3D reconstruction
 - d. 3D annotation and Augmented Reality and demo
- 3. Conclusion

3D annotation

- WebGL technology to represent and link in all metadata
- Our annotation platform https://ie.csiro.au/apps/p3d-legacy/
- No ISO standard archival format for this kind of data
- Live demo?

Augmented Reality Showcase

Scope Tv: 3D Insect Scan

Live demo with Hololens

During the next break

- 1. Introduction
 - a. Digitisation and 3D photogrammetry
 - b. Pros and cons of 3D photogrammetry, and common issues
- 2. Proposed solutions for high-throughput 3D capture
 - a. Specimen handling
 - b. Targetless scanning and high speed image acquisition
 - c. "Human in the loop" 3D reconstruction
 - d. 3D annotation and Augmented Reality and demo

3. Conclusion

Conclusions

- High throughput 3D digitisation needs 3D photogrammetry
- Possible solutions for
 - Specimen handling with robotic arms
 - High speed image capture
 - Light field capture/reconstruction of in-focus images
 - "Human in the loop" reconstruction
 - 3D web and augmented reality for publication and catalogue
- Cross discipline developments require more efforts...

Thank you

CSIRO Data61 - Quantitative Imaging

Chuong Nguyen Experimental Scientist

t +61 2 6216 7025

e Chuong.Nguyen@data61.csiro.au

w http://people.csiro.au/N/C/Chuong-Nguyen

